Federated Learning: Theory and Practice
Nguyen, Lam M., Hoang, Trong Nghia, Chen, Pin-Yu
- 出版商: Academic Press
- 出版日期: 2024-02-15
- 售價: $4,520
- 貴賓價: 9.5 折 $4,294
- 語言: 英文
- 頁數: 434
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443190372
- ISBN-13: 9780443190377
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$7,010$6,660 -
$1,880$1,786 -
$7,010$6,660 -
$4,500$4,275 -
$6,640$6,308 -
$4,860$4,617 -
$5,430$5,159 -
$2,600$2,470 -
$6,360$6,042 -
$6,640$6,308 -
$7,010$6,660 -
$1,670$1,587 -
$1,840$1,748 -
$5,690$5,406 -
$4,520$4,294 -
$7,030$6,679 -
$7,750$7,363 -
$4,040$3,838 -
$1,100$1,045 -
$1,100$1,045 -
$900$855 -
$1,010$960 -
$2,340$2,223 -
$2,300$2,185 -
$1,670$1,587
相關主題
商品描述
Federated Learning: Theory and Practi ce provides a holisti c treatment to federated learning as a distributed learning system with various forms of decentralized data and features. Part I of the book begins with a broad overview of opti mizati on fundamentals and modeling challenges, covering various aspects of communicati on effi ciency, theoretical convergence, and security. Part II features
emerging challenges stemming from many socially driven concerns of federated learning as a future public machine learning service. Part III concludes the book with a wide array of industrial applicati ons of federated learning, as well as ethical considerations, showcasing its immense potential for driving innovation while safeguarding sensitive data.
Federated Learning: Theory and Practi ce provides a comprehensive and accessible introducti on to federated learning which is suitable for researchers and students in academia, and industrial practitioners who seek to leverage the latest advance in machine learning for their entrepreneurial endeavors.
商品描述(中文翻譯)
《聯邦學習:理論與實踐》全面探討了聯邦學習作為一種具有不同形式的分散式學習系統的綜合性方法。本書的第一部分首先從優化基礎和建模挑戰的廣泛概述開始,涵蓋了通信效率、理論收斂和安全性等各個方面。第二部分介紹了聯邦學習作為未來公共機器學習服務所面臨的許多社會驅動問題。第三部分則以廣泛的工業應用和倫理考慮作為結尾,展示了聯邦學習在推動創新和保護敏感數據方面的巨大潛力。
《聯邦學習:理論與實踐》提供了一個全面且易於理解的聯邦學習入門,適合學術界的研究人員和學生,以及希望利用機器學習的最新進展來推動創業事業的工業從業人員。