Machine Learning with Noisy Labels: Definitions, Theory, Techniques and Solutions
Carneiro, Gustavo
- 出版商: Academic Press
- 出版日期: 2024-03-18
- 售價: $4,020
- 貴賓價: 9.5 折 $3,819
- 語言: 英文
- 頁數: 312
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443154414
- ISBN-13: 9780443154416
-
相關分類:
Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Most of the modern machine learning models, based on deep learning techniques, depend on carefully curated and cleanly labelled training sets to be reliably trained and deployed. However, the expensive labelling process involved in the acquisition of such training sets limits the number and size of datasets available to build new models, slowing down progress in the field. Alternatively, many poorly curated training sets containing noisy labels are readily available to be used to build new models. However, the successful exploration of such noisy-label training sets depends on the development of algorithms and models that are robust to these noisy labels.
Machine learning and Noisy Labels: Definitions, Theory, Techniques and Solutions defines different types of label noise, introduces the theory behind the problem, presents the main techniques that enable the effective use of noisy-label training sets, and explains the most accurate methods developed in the field.
This book is an ideal introduction to machine learning with noisy labels suitable for senior undergraduates, post graduate students, researchers and practitioners using, and researching into, machine learning methods.
商品描述(中文翻譯)
現代大部分基於深度學習技術的機器學習模型,需要精心策劃並標記清晰的訓練集來進行可靠的訓練和部署。然而,獲取這樣的訓練集所需的昂貴標記過程限制了可用於建立新模型的數量和大小,從而拖慢了該領域的進展。相反,許多經過粗糙策劃且包含噪聲標籤的訓練集可以輕易地用於建立新模型。然而,成功利用這些含有噪聲標籤的訓練集取決於開發出對這些噪聲標籤具有魯棒性的算法和模型。
《機器學習與噪聲標籤:定義、理論、技術和解決方案》介紹了不同類型的標籤噪聲,介紹了該問題背後的理論,提出了實現有效使用含有噪聲標籤訓練集的主要技術,並解釋了該領域中最準確的方法。
本書是一本關於機器學習與噪聲標籤的理想入門書籍,適合高年級本科生、研究生、研究人員和使用機器學習方法進行研究和實踐的從業人員。