Many-Sorted Algebras for Deep Learning and Quantum Technology
Giardina, Charles R.
- 出版商: Morgan Kaufmann
- 出版日期: 2024-02-05
- 售價: $6,360
- 貴賓價: 9.5 折 $6,042
- 語言: 英文
- 頁數: 422
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443136971
- ISBN-13: 9780443136979
-
相關分類:
DeepLearning、量子 Quantum
海外代購書籍(需單獨結帳)
相關主題
商品描述
Many-Sorted Algebras for Deep Learning and Quantum Technology presents a precise and rigorous
description of basic concepts in quantum technologies and how they relate to deep learning and quantum theory. Current merging of quantum theory and deep learning techniques provides the need for a source that gives readers insights into the algebraic underpinnings of these disciplines. Although analytical, topological, probabilistic, as well as geometrical concepts are employed in many of these areas, algebra exhibits the principal thread; hence, this thread is exposed using many-sorted algebras. This book includes hundreds of well-designed examples that illustrate the intriguing concepts in quantum systems. Along with these examples are numerous visual displays. In particular, the polyadic graph shows the types or sorts of objects used in quantum or deep learning. It also illustrates all the inter and intra-sort operations needed in describing algebras. In brief, it provides the closure conditions. Throughout the book, all laws or equational identities needed in specifying an algebraic structure are precisely described.
商品描述(中文翻譯)
《深度學習和量子技術的多排序代數》詳細而嚴謹地描述了量子技術的基本概念以及它們與深度學習和量子理論的關係。當前量子理論和深度學習技術的融合需要一個能夠讓讀者深入了解這些學科代數基礎的資源。儘管在這些領域中使用了分析、拓撲、概率以及幾何概念,但代數展示了主要的線索;因此,本書使用多排序代數來揭示這一線索。本書包含了數百個設計精良的例子,用以說明量子系統中的有趣概念。這些例子還配有大量的視覺展示。特別是,多元圖顯示了量子或深度學習中使用的對象的類型或排序。它還說明了描述代數所需的所有排序內部和排序間操作。簡而言之,它提供了閉包條件。在整本書中,精確描述了指定代數結構所需的所有定律或等式身份。