Quantum Process Algebra
暫譯: 量子過程代數
Wang, Yong
- 出版商: Morgan Kaufmann
- 出版日期: 2025-04-01
- 售價: $8,890
- 貴賓價: 9.5 折 $8,446
- 語言: 英文
- 頁數: 424
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0443275130
- ISBN-13: 9780443275135
-
相關分類:
量子 Quantum
海外代購書籍(需單獨結帳)
商品描述
Quantum Process Algebra introduces readers to the algebraic properties and laws for quantum computing. The book provides readers with all aspects of algebraic theory for quantum computing, including the basis of semantics and axiomatization for quantum computing. With the assumption of a quantum system, readers will learn to solve the modelling of the three main components in a quantum system: unitary operator, quantum measurement, and quantum entanglement, with full support of quantum and classical computing in closed systems. Next, the book establishes the relationship between probabilistic quantum bisimilarity and classical probabilistic bisimilarity, including strong probabilistic bisimilarity and weak probabilistic bisimilarity, which makes an axiomatization of quantum processes possible. With this framework, quantum and classical computing mixed processes are unified with the same structured operational semantics. Finally, the book establishes a series of axiomatizations of quantum process algebras. These process algebras support nearly all main computation properties. Quantum and classical computing in closed quantum systems are unified with the same equational logic and the same structured operational semantics under the framework of ACP-like probabilistic process algebra. This unification means that the mathematics in the book can be used widely for verification of quantum and classical computing mixed systems, for example, most quantum communication protocols. ACP-like axiomatization also inherits the advantages of ACP, for example, and modularity means that it can be extended in an elegant way.
商品描述(中文翻譯)
《量子過程代數》介紹了量子計算的代數性質和法則。這本書提供了量子計算的代數理論的各個方面,包括量子計算的語義基礎和公理化。假設一個量子系統,讀者將學會解決量子系統中三個主要組件的建模:單位算子(unitary operator)、量子測量(quantum measurement)和量子糾纏(quantum entanglement),並在封閉系統中充分支持量子和經典計算。接下來,這本書建立了概率量子雙相似性(probabilistic quantum bisimilarity)和經典概率雙相似性(classical probabilistic bisimilarity)之間的關係,包括強概率雙相似性(strong probabilistic bisimilarity)和弱概率雙相似性(weak probabilistic bisimilarity),這使得量子過程的公理化成為可能。在這個框架下,量子和經典計算的混合過程統一了相同結構的操作語義。最後,這本書建立了一系列量子過程代數的公理化。這些過程代數支持幾乎所有主要的計算性質。在封閉量子系統中,量子和經典計算在ACP類似的概率過程代數框架下統一了相同的方程邏輯和相同的結構操作語義。這種統一意味著書中的數學可以廣泛用於驗證量子和經典計算混合系統,例如,大多數量子通信協議。ACP類似的公理化也繼承了ACP的優勢,例如,模組化意味著它可以以優雅的方式擴展。