Survey of Text Mining: Clustering, Classification, and Retrieval (文本挖掘概論:聚類、分類與檢索)
Michael W. Berry
- 出版商: Springer
- 出版日期: 2003-09-09
- 售價: $2,640
- 貴賓價: 9.8 折 $2,587
- 語言: 英文
- 頁數: 244
- 裝訂: Hardcover
- ISBN: 0387955631
- ISBN-13: 9780387955636
-
相關分類:
Text-mining
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$690$587 -
$780$702 -
$520$442 -
$640$506 -
$1,881$1,782 -
$550$435 -
$620$490 -
$580$458 -
$490$387 -
$450$356 -
$780$663 -
$520$442 -
$520$411 -
$620$490 -
$650$507 -
$780$616 -
$390$332 -
$270$213 -
$450$356 -
$450$405 -
$800$680 -
$580$458 -
$690$545 -
$650$514 -
$750$593
相關主題
商品描述
Description
Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory.
As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments.
This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
商品描述(中文翻譯)
描述
從文本中提取內容仍然是信息處理和管理中的一個重要研究問題。捕捉基於文本的文檔集合的語義的方法可能基於貝葉斯模型、概率理論、向量空間模型、統計模型,甚至圖論。
隨著數字化文本媒體的體量不斷增長,設計穩健、可擴展的索引和搜索策略(軟體)以滿足各種用戶需求的需求也在增加。從文本中提取或創建知識需要系統化且可靠的處理,這可以被編碼並適應不斷變化的需求和環境。
本書將邀請學術界和業界的專家,推薦實用的方法來淨化、索引和挖掘文本信息。它將涉及文檔識別、文檔的聚類和分類、文本清理,以及文本的語義模型可視化。