The Elements of Statistical Learning: Data Mining, Inference, and Prediction
暫譯: 統計學習的元素:資料探勘、推論與預測
Trevor Hastie, Robert Tibshirani, Jerome Friedman
- 出版商: Springer
- 出版日期: 2003-07-30
- 售價: $1,539
- 語言: 英文
- 頁數: 552
- 裝訂: Hardcover
- ISBN: 0387952845
- ISBN-13: 9780387952840
-
相關分類:
Data-mining
已過版
買這商品的人也買了...
-
$580$493 -
$680$578 -
$980$833 -
$970Introduction to Algorithms, 2/e
-
$1,274Computer Architecture: A Quantitative Approach, 3/e(精裝本)
-
$1,920$1,824 -
$690$587 -
$600$588 -
$590$466 -
$680$578 -
$690$538 -
$720$612 -
$750$638 -
$560$476 -
$390$304 -
$490$323 -
$490$417 -
$850$723 -
$480$379 -
$750$638 -
$780$616 -
$490$382 -
$650$507 -
$720$612 -
$600$480
相關主題
商品描述
Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry.
The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting--the first comprehensive treatment of this topic in any book.
Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
FROM THE REVIEWS:
TECHNOMETRICS "[This] is a vast and complex book. Generally, it concentrates on explaining why and how the methods work, rather than how to use them. Examples and especially the visualizations are principle features...As a source for the methods of statistical learning...it will probably be a long time before there is a competitor to this book."
商品描述(中文翻譯)
在過去十年中,計算和資訊技術經歷了爆炸性的增長。隨之而來的是來自醫學、生物學、金融和行銷等多個領域的大量數據。理解這些數據的挑戰促使統計學領域開發出新工具,並催生了數據挖掘、機器學習和生物資訊學等新領域。
這些工具有許多共同的基礎,但通常使用不同的術語來表達。本書在一個共同的概念框架中描述了這些領域的重要思想。雖然方法是統計性的,但重點在於概念而非數學。書中提供了許多例子,並大量使用彩色圖形。這本書應該是統計學家和任何對科學或工業中的數據挖掘感興趣的人的寶貴資源。
本書的內容涵蓋廣泛,從監督學習(預測)到非監督學習。許多主題包括神經網絡、支持向量機、分類樹和提升——這是任何書籍中對此主題的首次全面處理。
Trevor Hastie、Robert Tibshirani 和 Jerome Friedman 是斯坦福大學的統計學教授。他們是該領域的知名研究者:Hastie 和 Tibshirani 開發了廣義加法模型並撰寫了同名的熱門書籍。Hastie 編寫了 S-PLUS 中的大部分統計建模軟體,並發明了主曲線和主表面。Tibshirani 提出了 Lasso,並共同撰寫了非常成功的《引介自助法》。Friedman 是許多數據挖掘工具的共同發明者,包括 CART、MARS 和投影追尋。
來自評論的聲音:
TECHNOMETRICS '[這] 是一本龐大而複雜的書。一般來說,它專注於解釋方法為何以及如何運作,而不是如何使用它們。例子,尤其是視覺化,是主要特徵……作為統計學習方法的來源……可能需要很長時間才能有與這本書競爭的作品。'