Matrix Algebra: Theory, Computations, and Applications in Statistics (Springer Texts in Statistics)
暫譯: 矩陣代數:理論、計算與統計應用(斯普林格統計系列)

James E. Gentle

  • 出版商: Springer
  • 出版日期: 2007-07-27
  • 售價: $4,200
  • 貴賓價: 9.5$3,990
  • 語言: 英文
  • 頁數: 530
  • 裝訂: Hardcover
  • ISBN: 0387708723
  • ISBN-13: 9780387708720
  • 相關分類: 機率統計學 Probability-and-statistics
  • 海外代購書籍(需單獨結帳)

商品描述

Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.

商品描述(中文翻譯)

矩陣代數是數據分析和統計理論中最重要的數學領域之一。本書針對統計應用,介紹了矩陣代數理論的相關方面。接著,書中考慮了統計中遇到的各種類型的矩陣,例如投影矩陣和正定矩陣,並描述了這些矩陣的特殊性質。最後,書中涵蓋了數值線性代數,首先討論數值計算的基本概念,然後介紹了用於矩陣分解、解線性方程組以及提取特徵值和特徵向量的準確且高效的算法。

最後瀏覽商品 (20)