Functional Data Analysis, 2/e (Hardcover)
暫譯: 函數資料分析,第2版 (精裝本)
James Ramsay, B. W. Silverman
- 出版商: Springer
- 出版日期: 2005-06-08
- 售價: $10,030
- 貴賓價: 9.5 折 $9,529
- 語言: 英文
- 頁數: 428
- 裝訂: Hardcover
- ISBN: 038740080X
- ISBN-13: 9780387400808
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,400$1,372 -
$1,575$1,544 -
$1,311Introduction to Java Programming, Comprehensive Version, 8/e (IE-Paperback)
-
$5,550$5,273 -
$945The Android Developer's Cookbook: Building Applications with the Android SDK (Paperback)
-
$850$723 -
$2,190$2,081 -
$680$537 -
$780$616 -
$560$437 -
$580$458
商品描述
Description
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researchers; it will have value both within statistics and across a broad spectrum of other fields. Much of the material is based on the authors' own work, some of which appears here for the first time. Jim Ramsay is Professor of Psychology at McGill University and is an international authority on many aspects of multivariate analysis. He draws on his collaboration with researchers in speech articulation, motor control, meteorology, psychology, and human physiology to illustrate his technical contributions to functional data analysis in a wide range of statistical and application journals. Bernard Silverman, author of the highly regarded "Density Estimation for Statistics and Data Analysis," and coauthor of "Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach," is Professor of Statistics at Bristol University. His published work on smoothing methods and other aspects of applied, computational, and theoretical statistics has been recognized by the Presidents' Award of the Committee of Presidents of Statistical Societies, and the award of two Guy Medals by the Royal Statistical Society.
Table of Contents
Introduction * Notation and Techniques * Representing Functional Data as Smooth Functions * The Roughness Penalty Approach * The Registration and Display of Functional Data * Principal Components Analysis for Functional Data * Regularized Principal Components Analysis * Principal Components Analysis of Mixed Data * Functional Linear Models * Functional Linear Models for Scalar Responses * Functional Linear Modesl for Functional Responses * Canonical Correlation and Discriminant Analysis * Differential Operators in Functional Data Analysis * Principal Differential Analysis * More General Roughness Penalties * Some Perspectives on FDA
商品描述(中文翻譯)
**描述**
當今的科學家收集曲線和其他功能觀察的樣本。本專著提出了許多針對這類數據的想法和技術。包括線性回歸、主成分分析、線性建模和典型相關分析等經典的功能領域表達,以及特定的功能技術,如曲線配準和主微分分析。整本書使用了來自實際應用的數據,作為動機和示例,顯示功能方法如何讓我們看到新的事物,特別是通過利用生成數據的過程的平滑性。這些數據集展示了功能數據分析的廣泛範疇;它們來自於生長分析、氣象學、生物力學、馬科學、經濟學和醫學。本書呈現了新穎的統計技術,同時保持數學水平的廣泛可接觸性。它旨在吸引學生、應用數據分析師和經驗豐富的研究人員;在統計學內部及其他廣泛領域中都具有價值。許多材料基於作者自己的工作,其中一些首次出現在此。吉姆·拉姆齊(Jim Ramsay)是麥吉爾大學的心理學教授,是多變量分析許多方面的國際權威。他借助與語音發音、運動控制、氣象學、心理學和人體生理學研究人員的合作,來說明他在統計和應用期刊中對功能數據分析的技術貢獻。伯納德·西爾弗曼(Bernard Silverman)是備受推崇的《統計與數據分析的密度估計》("Density Estimation for Statistics and Data Analysis")的作者,以及《非參數回歸和廣義線性模型:粗糙度懲罰方法》("Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach")的合著者,是布里斯托大學的統計學教授。他在平滑方法及其他應用、計算和理論統計方面的發表作品,曾獲得統計學會主席委員會的主席獎,以及英國皇家統計學會的兩項蓋伊獎章。
**目錄**
引言 * 符號與技術 * 將功能數據表示為平滑函數 * 粗糙度懲罰方法 * 功能數據的配準與顯示 * 功能數據的主成分分析 * 正則化主成分分析 * 混合數據的主成分分析 * 功能線性模型 * 標量響應的功能線性模型 * 功能響應的功能線性模型 * 典型相關與判別分析 * 功能數據分析中的微分算子 * 主微分分析 * 更一般的粗糙度懲罰 * 功能數據分析的一些觀點