Medical Risk Prediction Models: With Ties to Machine Learning
Gerds, Thomas A., Kattan, Michael W.
- 出版商: CRC
- 出版日期: 2022-08-29
- 售價: $2,700
- 貴賓價: 9.5 折 $2,565
- 語言: 英文
- 頁數: 312
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367673738
- ISBN-13: 9780367673734
-
相關分類:
Machine Learning
-
其他版本:
Medical Risk Prediction Models: With Ties to Machine Learning (Hardcover)
立即出貨 (庫存=1)
相關主題
商品描述
Medical Risk Prediction Models: With Ties to Machine Learning is a hands-on book for clinicians, epidemiologists, and professional statisticians who need to make or evaluate a statistical prediction model based on data. The subject of the book is the patient's individualized probability of a medical event within a given time horizon. Gerds and Kattan describe the mathematical details of making and evaluating a statistical prediction model in a highly pedagogical manner while avoiding mathematical notation. Read this book when you are in doubt about whether a Cox regression model predicts better than a random survival forest.
Features:
- All you need to know to correctly make an online risk calculator from scratch
- Discrimination, calibration, and predictive performance with censored data and competing risks
- R-code and illustrative examples
- Interpretation of prediction performance via benchmarks
- Comparison and combination of rival modeling strategies via cross-validation
Thomas A. Gerds is a professor at the Biostatistics Unit at the University of Copenhagen and is affiliated with the Danish Heart Foundation. He is the author of several R-packages on CRAN and has taught statistics courses to non-statisticians for many years.
Michael W. Kattan is a highly cited author and Chair of the Department of Quantitative Health Sciences at Cleveland Clinic. He is a Fellow of the American Statistical Association and has received two awards from the Society for Medical Decision Making: the Eugene L. Saenger Award for Distinguished Service, and the John M. Eisenberg Award for Practical Application of Medical Decision-Making Research.
商品描述(中文翻譯)
《醫療風險預測模型:與機器學習的聯繫》是一本針對臨床醫生、流行病學家和專業統計學家的實用書籍,這些人需要根據數據來建立或評估統計預測模型。本書的主題是患者在特定時間範圍內發生醫療事件的個體化概率。Gerds 和 Kattan 以高度教學性的方式描述了建立和評估統計預測模型的數學細節,同時避免使用數學符號。當你對 Cox 回歸模型是否比隨機生存森林預測得更好感到疑惑時,請閱讀本書。
特色:
- 所有你需要知道的,從零開始正確製作在線風險計算器
- 在有審查數據和競爭風險的情況下的區分、校準和預測性能
- R 代碼和示例
- 通過基準解釋預測性能
- 通過交叉驗證比較和結合競爭建模策略
Thomas A. Gerds 是哥本哈根大學生物統計單位的教授,並與丹麥心臟基金會有關聯。他是多個 R 套件的作者,並且多年來為非統計學家教授統計課程。
Michael W. Kattan 是一位被高度引用的作者,並擔任克里夫蘭診所定量健康科學系的主任。他是美國統計協會的會士,並曾獲得醫療決策協會的兩項獎項:尤金·L·桑格卓越服務獎和約翰·M·艾森伯格醫療決策研究實用應用獎。
作者簡介
Thomas A. Gerds is professor at the biostatistics unit at the University of Copenhagen. He is affiliated with the Danish Heart Foundation. He is author of several R-packages on CRAN and has taught statistics courses to non-statisticians for many years.
Michael Kattan is a highly cited author and Chair of the Department of Quantitative Health Sciences at Cleveland Clinic. He is a Fellow of the American Statistical Association and has received two awards from the Society for Medical Decision Making: the Eugene L. Saenger Award for Distinguished Service, and the John M. Eisenberg Award for Practical Application of Medical Decision Making Research.
作者簡介(中文翻譯)
Thomas A. Gerds 是哥本哈根大學生物統計單位的教授。他與丹麥心臟基金會有關聯。他是多個在 CRAN 上的 R 套件的作者,並且多年來一直教授非統計學家的統計課程。
Michael Kattan 是一位被高度引用的作者,並且是克里夫蘭診所定量健康科學系的主任。他是美國統計協會的會士,並且曾獲得醫學決策協會的兩項獎項:尤金·L·桑傑獎以表彰其卓越服務,以及約翰·M·艾森伯格獎以表彰醫學決策研究的實際應用。