Data Classification: Algorithms and Applications
暫譯: 數據分類:演算法與應用

Aggarwal, Charu C.

  • 出版商: CRC
  • 出版日期: 2020-09-30
  • 售價: $2,250
  • 貴賓價: 9.5$2,138
  • 語言: 英文
  • 頁數: 707
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 036765914X
  • ISBN-13: 9780367659141
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

商品描述

Comprehensive Coverage of the Entire Area of Classification

Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data.

This comprehensive book focuses on three primary aspects of data classification:







  • Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks.


  • Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm.


  • Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.

商品描述(中文翻譯)

全面涵蓋分類領域

分類問題的研究往往在模式識別、資料庫、資料探勘和機器學習等領域中呈現出碎片化的狀態。資料分類:演算法與應用以統一的方式探討這些不同社群的工作,深入研究分類的基本演算法以及在多種問題領域中的應用,包括文本、多媒體、社交網路和生物資料。

這本全面的書籍專注於資料分類的三個主要方面:








  • 方法:本書首先描述用於分類的常見技術,包括機率方法、決策樹、基於規則的方法、基於實例的方法、支持向量機方法和神經網路。




  • 領域:接著,本書檢視用於多媒體、文本、時間序列、網路、離散序列和不確定資料等資料領域的特定方法。由於大數據範式的近期重要性,它也涵蓋了大型資料集和資料流。




  • 變化:本書最後提供對分類過程變化的見解。它討論了集成學習、稀有類別學習、距離函數學習、主動學習、視覺學習、轉移學習和半監督學習,以及分類器的評估方面。

作者簡介

Charu C. Aggarwal is a research scientist at the IBM T.J. Watson Research Center. A fellow of the IEEE and the ACM, he is the author/editor of ten books, an associate editor of several journals, and the vice-president of the SIAM Activity Group on Data Mining. Dr. Aggarwal has published over 200 papers, has applied for or been granted over 80 patents, and has received numerous honors, including the IBM Outstanding Technical Achievement Award and EDBT 2014 Test of Time Award. His research interests include performance analysis, databases, and data mining. He earned a Ph.D. from the Massachusetts Institute of Technology.

作者簡介(中文翻譯)

Charu C. Aggarwal 是 IBM T.J. Watson 研究中心的研究科學家。他是 IEEE 和 ACM 的會士,著有或編輯十本書籍,並擔任多本期刊的副編輯,以及 SIAM 數據挖掘活動小組的副主席。Aggarwal 博士已發表超過 200 篇論文,申請或獲得超過 80 項專利,並獲得多項榮譽,包括 IBM 傑出技術成就獎和 EDBT 2014 時間考驗獎。他的研究興趣包括性能分析、資料庫和數據挖掘。他獲得麻省理工學院的博士學位。