Deep Learning in Visual Computing: Explanations and Examples
暫譯: 視覺計算中的深度學習:解釋與範例

Ugail, Hassan

  • 出版商: CRC
  • 出版日期: 2022-07-07
  • 售價: $2,740
  • 貴賓價: 9.5$2,603
  • 語言: 英文
  • 頁數: 134
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367549638
  • ISBN-13: 9780367549633
  • 相關分類: DeepLearning
  • 海外代購書籍(需單獨結帳)

商品描述

Deep learning is an artificially intelligent entity that teaches itself and can be utilized to make predictions. Deep learning mimics the human brain and provides learned solutions addressing many challenging problems in the area of visual computing. From object recognition to image classification for diagnostics, deep learning has shown the power of artificial deep neural networks in solving real world visual computing problems with super-human accuracy. The introduction of deep learning into the field of visual computing has meant to be the death of most of the traditional image processing and computer vision techniques. Today, deep learning is considered to be the most powerful, accurate, efficient and effective method with the potential to solve many of the most challenging problems in visual computing.

This book provides an insight into deep machine learning and the challenges in visual computing to tackle the novel method of machine learning. It introduces readers to the world of deep neural network architectures with easy-to-understand explanations. From face recognition to image classification for diagnosis of cancer, the book provides unique examples of solved problems in applied visual computing using deep learning. Interested and enthusiastic readers of modern machine learning methods will find this book easy to follow. They will find it a handy guide for designing and implementing their own projects in the field of visual computing.

商品描述(中文翻譯)

深度學習是一種自我學習的人工智慧實體,可以用來進行預測。深度學習模仿人類大腦,並提供學習到的解決方案,以應對視覺計算領域中的許多挑戰性問題。從物體識別到影像分類以進行診斷,深度學習展示了人工深度神經網絡在解決現實世界視覺計算問題時的超人準確性。深度學習的引入意味著大多數傳統影像處理和計算機視覺技術的終結。如今,深度學習被認為是最強大、最準確、最高效且最有效的方法,具有解決視覺計算中許多最具挑戰性問題的潛力。

本書深入探討深度機器學習及其在視覺計算中面臨的挑戰,以應對這一新穎的機器學習方法。它以易於理解的解釋向讀者介紹深度神經網絡架構的世界。從人臉識別到癌症診斷的影像分類,本書提供了使用深度學習解決的應用視覺計算問題的獨特範例。對現代機器學習方法感興趣且充滿熱情的讀者將發現本書易於跟隨,並將其視為設計和實施自己在視覺計算領域項目的實用指南。

作者簡介

Prof Hassan Ugail is Director of the Centre for Visual Computing at the University of Bradford, UK. He is a renowned computer scientist in the area of visual computing and artificial intelligence (AI). He is an advocate of AI for helping to tackle real world issues in the areas of digital health, innovative engineering and sustainable societies in general. More specifically, he works in the area of human biometrics especially the development of cutting-edge AI solutions for biometric face recognition. His most recent work in this area includes helping to unravel the real identity of the two Russian spies at the heart of the Salisbury Novichok poisoning case - one of the biggest international stories of 2018.

作者簡介(中文翻譯)

哈桑·尤蓋爾教授是英國布拉德福德大學視覺計算中心的主任。他是視覺計算和人工智慧(AI)領域的知名計算機科學家。他提倡利用人工智慧來解決數位健康、創新工程以及可持續社會等現實世界問題。更具體地說,他專注於人類生物識別技術,特別是開發尖端的人工智慧解決方案以進行生物識別面部識別。他在這一領域的最新工作包括協助揭開與2018年最大的國際新聞之一——索爾茲伯里諾維喬克中毒事件——相關的兩名俄羅斯間諜的真實身份。