Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading
暫譯: 計算金融中的政權變遷檢測:數據科學、機器學習與算法交易
Chen, Jun, Tsang, Edward P. K.
- 出版商: CRC
- 出版日期: 2022-05-30
- 售價: $2,350
- 貴賓價: 9.5 折 $2,233
- 語言: 英文
- 頁數: 138
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367540959
- ISBN-13: 9780367540951
-
相關分類:
Machine Learning、Algorithms-data-structures、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics:
- Data science: as an alternative to time series, price movements in a market can be summarised as directional changes
- Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model
- Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change
- Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed
- Algorithmic trading: regime tracking information can help us to design trading algorithms
It will be of great interest to researchers in computational finance, machine learning and data science.
About the Authors
Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.
Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.
商品描述(中文翻譯)
基於對「方向變化」的跨學科研究,《計算金融中的制度變化檢測:數據科學、機器學習與算法交易》採用數據驅動的方法進行金融數據分析,將機器學習應用於金融市場監控和算法交易。方向變化是一種總結市場價格變化的新方法。它不是在固定的時間間隔(例如時間序列中的每日收盤)取樣價格,而是在市場方向改變時(「之字形」)取樣價格。通過以不同的方式取樣數據,本書闡述了能夠提取其他市場參與者可能無法看到的信息的概念。本書包括Richard Olsen的前言,並探討以下主題:
- 數據科學:作為時間序列的替代,市場中的價格變動可以總結為方向變化
- 機器學習用於制度變化檢測:可以通過隱馬爾可夫模型發現市場中的歷史制度變化
- 制度特徵化:可以使用在方向變化下定義的指標來特徵化歷史數據中的正常和異常制度
- 市場監控:通過使用正常和異常制度的歷史特徵,可以監控市場以檢測市場制度是否已經改變
- 算法交易:制度追蹤信息可以幫助我們設計交易算法
這本書將對計算金融、機器學習和數據科學的研究者產生極大的興趣。
關於作者
Jun Chen於2019年在埃塞克斯大學計算金融與經濟代理中心獲得計算金融博士學位。
Edward P K Tsang是埃塞克斯大學的名譽教授,於2002年共同創立了計算金融與經濟代理中心。
作者簡介
Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.
Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002. He is a Visiting Professor at University of Hong Kong.
作者簡介(中文翻譯)
陳俊於2019年在英國埃塞克斯大學計算金融與經濟代理中心獲得計算金融博士學位。
曾培基是英國埃塞克斯大學的名譽教授,並於2002年共同創立了計算金融與經濟代理中心。他是香港大學的客座教授。