Foundations of Predictive Analytics
暫譯: 預測分析基礎

Wu, James, Coggeshall, Stephen

商品描述

Drawing on the authors' two decades of experience in applied modeling and data mining, Foundations of Predictive Analytics presents the fundamental background required for analyzing data and building models for many practical applications, such as consumer behavior modeling, risk and marketing analytics, and other areas. It also discusses a variety of practical topics that are frequently missing from similar texts.





The book begins with the statistical and linear algebra/matrix foundation of modeling methods, from distributions to cumulant and copula functions to Cornish-Fisher expansion and other useful but hard-to-find statistical techniques. It then describes common and unusual linear methods as well as popular nonlinear modeling approaches, including additive models, trees, support vector machine, fuzzy systems, clustering, na ve Bayes, and neural nets. The authors go on to cover methodologies used in time series and forecasting, such as ARIMA, GARCH, and survival analysis. They also present a range of optimization techniques and explore several special topics, such as Dempster-Shafer theory.





An in-depth collection of the most important fundamental material on predictive analytics, this self-contained book provides the necessary information for understanding various techniques for exploratory data analysis and modeling. It explains the algorithmic details behind each technique (including underlying assumptions and mathematical formulations) and shows how to prepare and encode data, select variables, use model goodness measures, normalize odds, and perform reject inference.



Web Resource
The book's website at www.DataMinerXL.com offers the DataMinerXL software for building predictive models. The site also includes more examples and information on modeling.

商品描述(中文翻譯)

根據作者二十年的應用建模和數據挖掘經驗,預測分析基礎 提供了分析數據和建立模型所需的基本背景,適用於許多實際應用,例如消費者行為建模、風險和市場分析等領域。它還討論了許多在類似書籍中經常缺失的實用主題。

本書首先介紹了建模方法的統計學和線性代數/矩陣基礎,涵蓋了從分佈到累積量和聯合分佈函數,再到Cornish-Fisher展開及其他有用但難以找到的統計技術。接著描述了常見和不尋常的線性方法,以及流行的非線性建模方法,包括加法模型、樹模型、支持向量機、模糊系統、聚類、朴素貝葉斯和神經網絡。作者進一步介紹了用於時間序列和預測的各種方法論,如ARIMA、GARCH和生存分析。他們還介紹了一系列優化技術,並探討了幾個特殊主題,如Dempster-Shafer理論。

這本深入的書籍收錄了預測分析中最重要的基本材料,提供了理解各種探索性數據分析和建模技術所需的信息。它解釋了每種技術背後的算法細節(包括基本假設和數學公式),並展示了如何準備和編碼數據、選擇變數、使用模型優度測量、標準化賠率以及執行拒絕推斷。

網路資源
本書的網站 www.DataMinerXL.com 提供了用於建立預測模型的DataMinerXL軟體。該網站還包含更多的範例和建模信息。

作者簡介

James Wu is a Fixed Income Quant with extensive expertise in a wide variety of applied analytical solutions in consumer behavior modeling and financial engineering. He previously worked at ID Analytics, Morgan Stanley, JPMorgan Chase, Los Alamos Computational Group, and CASA. He earned a PhD from the University of Idaho.



Stephen Coggeshall is the Chief Technology Officer of ID Analytics. He previously worked at Los Alamos Computational Group, Morgan Stanley, HNC Software, CASA, and Los Alamos National Laboratory. During his over 20 year career, Dr. Coggeshall has helped teams of scientists develop practical solutions to difficult business problems using advanced analytics. He earned a PhD from the University of Illinois and was named 2008 Technology Executive of the Year by the San Diego Business Journal.

作者簡介(中文翻譯)

吳詠杰是一位固定收益量化分析師,擁有在消費者行為建模和金融工程方面的廣泛應用分析解決方案專業知識。他曾在ID Analytics、摩根士丹利、摩根大通、洛斯阿拉莫斯計算小組和CASA工作。他獲得了愛達荷大學的博士學位。

史蒂芬·科吉沙爾是ID Analytics的首席技術官。他曾在洛斯阿拉莫斯計算小組、摩根士丹利、HNC Software、CASA和洛斯阿拉莫斯國家實驗室工作。在超過20年的職業生涯中,科吉沙爾博士幫助科學家團隊利用先進的分析技術開發實用的解決方案來解決困難的商業問題。他獲得了伊利諾伊大學的博士學位,並於2008年被《聖地牙哥商業日報》評選為年度技術執行官。