Bayesian Networks: With Examples in R 2nd 版本
暫譯: 貝葉斯網路:R 語言範例(第二版)

Scutari, Marco, Denis, Jean-Baptiste

  • 出版商: CRC
  • 出版日期: 2021-07-29
  • 售價: $3,600
  • 貴賓價: 9.5$3,420
  • 語言: 英文
  • 頁數: 272
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0367366517
  • ISBN-13: 9780367366513
  • 相關分類: 機率統計學 Probability-and-statistics
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

相關主題

商品描述

 

Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side-by-side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine learning practice: dynamic networks, networks with heterogeneous variables, and model validation.

 

The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signaling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.

 

Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.

 

Online supplementary materials include the data sets and the code used in the book, which will all be made available from https: //www.bnlearn.com/book-crc-2ed/

 

商品描述(中文翻譯)

《貝葉斯網路:R範例第二版》以實作方式介紹貝葉斯網路。簡單而有意義的範例說明了建模過程的每一步,並並排討論其背後的理論及使用R語言的應用。這些範例從最簡單的概念開始,逐漸增加複雜性。特別是,本新版本包含了現代機器學習實踐中重要的新材料:動態網路、具有異質變數的網路以及模型驗證。

前三章解釋了貝葉斯網路建模的整個過程,從結構學習到參數學習再到推斷。這些章節涵蓋了離散、Gaussian和條件Gaussian貝葉斯網路。接下來的兩章深入探討動態網路(用於建模時間數據)以及包含任意隨機變數的網路(使用Stan)。本書然後對貝葉斯網路的基本原理進行簡明而嚴謹的處理,並介紹因果貝葉斯網路。它還概述了實現貝葉斯網路的R套件和其他軟體。最後一章評估了兩個真實世界的範例:發表於《科學》期刊的標誌性因果蛋白質信號網路,以及用於預測不同身體部位組成的概率圖模型。

本書涵蓋了貝葉斯網路的理論和實踐方面,為您提供了該領域的入門概述。它使您對這種建模方法背後的關鍵點有清晰而實用的理解,同時讓您熟悉用於在R中實現真實世界分析的最相關套件。本書中的範例涵蓋了多個應用領域、數據驅動模型和專家系統、概率和因果觀點,從而為您在各種情境中工作提供了起點。

線上補充材料包括書中使用的數據集和代碼,所有資料將可從 https://www.bnlearn.com/book-crc-2ed/ 獲得。

作者簡介

Marco Scutari is a Senior Lecturer at Istituto Dalle Molle di Studisull'Intelligenza Artificiale (IDSIA), Switzerland. He has held positions in Statistics, Statistical Genetics and Machine Learning in the UK and Switzerland since completing his Ph.D. in Statistics in 2011. His research focuses on the theory of Bayesian networks and their applications to biological and clinical data, as well as statistical computing and software engineering.

 

Jean-Baptiste Denis was formerly appointed as a statistician and modeller at the "Mathematics and Applied Informatics from Genome to Environment" unit of the French National Research Institute for Agriculture, Food and Environment. His main research interests were the modelling of two-way tables and Bayesian approaches, especially applied to genotype-by-environment interactions and microbiological food safety.

作者簡介(中文翻譯)

馬可·斯庫塔里是瑞士達爾莫勒人工智慧研究所(IDSIA)的高級講師。自2011年獲得統計學博士學位以來,他在英國和瑞士的統計學、統計遺傳學和機器學習領域擔任過多個職位。他的研究重點是貝葉斯網絡的理論及其在生物和臨床數據中的應用,以及統計計算和軟體工程。

尚-巴蒂斯特·德尼曾擔任法國國家農業、食品和環境研究院的「從基因組到環境的數學與應用資訊學」單位的統計學家和建模師。他的主要研究興趣是雙向表的建模和貝葉斯方法,特別是應用於基因型與環境互動及微生物食品安全。