Swarm Intelligence Algorithms (Two Volume Set)
暫譯: 群體智慧演算法(雙卷本)
Slowik, Adam
- 出版商: CRC
- 出版日期: 2020-08-19
- 售價: $9,190
- 貴賓價: 9.5 折 $8,731
- 語言: 英文
- 頁數: 768
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0367023458
- ISBN-13: 9780367023454
-
相關分類:
ARM、Algorithms-data-structures
海外代購書籍(需單獨結帳)
相關主題
商品描述
Swarm intelligence algorithms are a form of nature-based optimization algorithms. Their main inspiration is the cooperative behavior of animals within specific communities. This can be described as simple behaviors of individuals along with the mechanisms for sharing knowledge between them, resulting in the complex behavior of the entire community. Examples of such behavior can be found in ant colonies, bee swarms, schools of fish or bird flocks. Swarm intelligence algorithms are used to solve difficult optimization problems for which there are no exact solving methods or the use of such methods is impossible, e.g. due to unacceptable computational time.
This set comprises two volumes: Swarm Intelligence Algorithms: A Tutorial and Swarm Intelligence Algorithms: Modifications and Applications.
The first volume thoroughly presents the basics of 24 algorithms selected from the entire family of swarm intelligence algorithms. It contains a detailed explanation of how each algorithm works, along with relevant program codes in Matlab and the C ++ programming language, as well as numerical examples illustrating step-by-step how individual algorithms work.
The second volume describes selected modifications of these algorithms and presents their practical applications. This book presents 24 swarm algorithms together with their modifications and practical applications. Each chapter is devoted to one algorithm. It contains a short description along with a pseudo-code showing the various stages of its operation. In addition, each chapter contains a description of selected modifications of the algorithm and shows how it can be used to solve a selected practical problem.
商品描述(中文翻譯)
群體智慧演算法是一種基於自然的優化演算法。它們的主要靈感來自於特定社群中動物的合作行為。這可以描述為個體的簡單行為以及它們之間分享知識的機制,最終導致整個社群的複雜行為。這種行為的例子可以在蟻群、蜜蜂群、魚群或鳥群中找到。群體智慧演算法用於解決難以優化的問題,這些問題沒有精確的解法或使用這些方法是不可能的,例如因為不可接受的計算時間。
本書共分為兩卷:《群體智慧演算法:教程》和《群體智慧演算法:修改與應用》。
第一卷徹底介紹了從整個群體智慧演算法家族中選出的24種演算法的基本概念。它詳細解釋了每個演算法的運作方式,並提供了相關的Matlab和C++程式碼,以及數值範例,逐步說明各個演算法的運作。
第二卷描述了這些演算法的選定修改並展示了它們的實際應用。本書介紹了24種群體演算法及其修改和實際應用。每一章專注於一種演算法,包含簡短的描述以及顯示其運作各個階段的偽代碼。此外,每一章還包含對演算法選定修改的描述,並展示如何使用它來解決特定的實際問題。
作者簡介
Adam Slowik (IEEE Member 2007; IEEE Senior Member 2012) is an Associate Professor in the Department of Electronics and Computer Science, Koszalin University of Technology. His research interests include soft computing, computational intelligence, and, particularly, bio-inspired optimization algorithms and their engineering applications. He was a recipient of one Best Paper Award (IEEE Conference on Human System Interaction - HSI 2008).
作者簡介(中文翻譯)
亞當·斯洛維克(2007年成為IEEE會員;2012年成為IEEE高級會員)是科沙林科技大學電子與計算機科學系的副教授。他的研究興趣包括軟計算、計算智能,特別是生物啟發的優化算法及其工程應用。他曾獲得一次最佳論文獎(IEEE人機系統互動會議 - HSI 2008)。