Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning)
暫譯: 使用核學習:支持向量機、正則化、優化及其他(自適應計算與機器學習)

Bernhard Schölkopf, Alexander J. Smola

買這商品的人也買了...

商品描述

A comprehensive introduction to Support Vector Machines and related kernel methods.

In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs―-kernels―for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics.

Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.

商品描述(中文翻譯)

支持向量機及相關核方法的全面介紹。

在1990年代,基於統計學習理論的結果,開發出一種新型的學習演算法:支持向量機(Support Vector Machine, SVM)。這催生了一類理論上優雅的學習機器,這些機器使用SVM的核心概念——核(kernels)——來處理多種學習任務。核機器提供了一個模組化的框架,可以通過選擇核函數和基礎演算法來適應不同的任務和領域。它們正在取代神經網絡,應用於包括工程、資訊檢索和生物資訊學等多個領域。

使用核進行學習提供了對SVM及相關核方法的介紹。雖然本書從基礎開始,但也包括最新的研究。它提供了所有必要的概念,使具備一些基本數學知識的讀者能夠進入機器學習的世界,使用理論上有根據且易於使用的核演算法,並理解和應用過去幾年開發的強大演算法。