Online Stochastic Combinatorial Optimization
暫譯: 線上隨機組合優化

Hentenryck, Pascal Van, Bent, Russell

  • 出版商: Summit Valley Press
  • 出版日期: 2009-09-01
  • 售價: $700
  • 貴賓價: 9.5$665
  • 語言: 英文
  • 頁數: 232
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0262513471
  • ISBN-13: 9780262513470
  • 海外代購書籍(需單獨結帳)

商品描述

A framework for online decision making under uncertainty and time constraints, with online stochastic algorithms for implementing the framework, performance guarantees, and demonstrations of a variety of applications.

Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints. Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge. This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available. It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems. And finally, the book discusses the framework's possible limitations and suggests directions for future research.

商品描述(中文翻譯)

一個針對不確定性和時間限制下的線上決策框架,包含實現該框架的線上隨機算法、性能保證以及各種應用的示範。

在不確定性和時間限制下的線上決策代表了對於穩健智能代理來說最具挑戰性的問題之一。在一個日益動態、互聯和即時的世界中,智能系統必須動態適應不確定性,更新現有計劃以適應新的請求和事件,並在嚴格的時間限制下產出高品質的決策。這類線上決策應用變得越來越普遍:例如,救護車調度和緊急城市撤離路徑規劃本質上都是線上決策問題;其他應用包括互聯網通信的封包排程和預約系統。本書提出了一個新穎的框架——線上隨機優化,以應對這一挑戰。該框架假設未來請求的分佈,或其近似值,可以進行取樣,這在許多應用中是可行的,因為它們提供歷史數據或預測模型。此外,它還假設未來請求的分佈與當前決策是獨立的,這在多種應用中也是成立的,並具有顯著的計算優勢。本書介紹了幾種實現該框架的線上隨機算法,提供性能保證,並展示各種應用。它討論了如何放寬使用歷史取樣和機器學習的一些假設,並分析不同的基礎算法問題。最後,本書討論了該框架的可能限制並建議未來研究的方向。

作者簡介

Russell Bent is a Ph.D. graduate of Brown University, where he worked on online optimization. He recently joined the technical staff of Los Alamos National Laboratories.

作者簡介(中文翻譯)

拉塞爾·本特(Russell Bent)是布朗大學(Brown University)的博士畢業生,專注於線上優化(online optimization)。他最近加入了洛斯阿拉莫斯國家實驗室(Los Alamos National Laboratories)的技術團隊。