Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models (Hardcover)
暫譯: 學習與軟計算:支持向量機、神經網絡與模糊邏輯模型 (精裝版)
Vojislav Kecman
- 出版商: MIT
- 出版日期: 2001-03-19
- 售價: $2,090
- 語言: 英文
- 頁數: 608
- 裝訂: Hardcover
- ISBN: 0262112558
- ISBN-13: 9780262112550
已絕版
買這商品的人也買了...
-
$580$493 -
$680$578 -
$2,640$2,508 -
$1,176Designing the User Interface: Strategies for Effective Human-Computer Interaction, 4/e (IE)
-
$580$452 -
$1,274Computer Architecture: A Quantitative Approach, 3/e(精裝本)
-
$690$587 -
$480$408 -
$590$466 -
$420$357 -
$780$663 -
$720$612 -
$750$638 -
$560$476 -
$1,026Data Mining: Multimedia, Soft Computing, and Bioinformatics
-
$490$417 -
$680$578 -
$480$379 -
$750$638 -
$860$731 -
$650$507 -
$880$695 -
$5,930$5,634 -
$320$253 -
$450$351
相關主題
商品描述
This textbook provides a thorough introduction to the field of learning from experimental data and soft computing. Support vector machines (SVM) and neural networks (NN) are the mathematical structures, or models, that underlie learning, while fuzzy logic systems (FLS) enable us to embed structured human knowledge into workable algorithms. The book assumes that it is not only useful, but necessary, to treat SVM, NN, and FLS as parts of a connected whole. Throughout, the theory and algorithms are illustrated by practical examples, as well as by problem sets and simulated experiments. This approach enables the reader to develop SVM, NN, and FLS in addition to understanding them. The book also presents three case studies: on NN-based control, financial time series analysis, and computer graphics. A solutions manual and all of the MATLAB programs needed for the simulated experiments are available.
Contents
Preface
Introduction
1.Learning and Soft Computing: Rationale, Motivations, Needs, Basics
2.Support Vector Machines
3.Single-Layer Networks
4.Multilayer Perception
5.Radial Basis Function Networks
6.Fuzzy Logic Systems
7.Case Studies
8.Basic Nonlinear Optimization Methods
9.Mathematical Tools of Soft computing
Selected Abbreviations
Notes
References
Index
商品描述(中文翻譯)
這本教科書提供了對於從實驗數據學習和軟計算領域的全面介紹。支持向量機(Support Vector Machines, SVM)和神經網絡(Neural Networks, NN)是學習的數學結構或模型,而模糊邏輯系統(Fuzzy Logic Systems, FLS)使我們能夠將結構化的人類知識嵌入可行的算法中。本書假設將 SVM、NN 和 FLS 視為一個相互連結的整體不僅是有用的,更是必要的。全書通過實際範例、問題集和模擬實驗來說明理論和算法。這種方法使讀者能夠在理解這些概念的同時,開發 SVM、NN 和 FLS。本書還呈現了三個案例研究:基於 NN 的控制、金融時間序列分析和計算機圖形學。解決方案手冊和所有模擬實驗所需的 MATLAB 程序均可獲得。
**內容**
**前言**
介紹
1. 學習與軟計算:理由、動機、需求、基礎
2. 支持向量機
3. 單層網絡
4. 多層感知器
5. 径向基函數網絡
6. 模糊邏輯系統
7. 案例研究
8. 基本非線性優化方法
9. 軟計算的數學工具
選定的縮寫
註解
參考文獻
索引