Learning Kernel Classifiers: Theory and Algorithms (Hardcover)

Ralf Herbrich

  • 出版商: MIT
  • 出版日期: 2001-12-07
  • 售價: $1,900
  • 貴賓價: 9.5$1,805
  • 語言: 英文
  • 頁數: 384
  • 裝訂: Hardcover
  • ISBN: 026208306X
  • ISBN-13: 9780262083065
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Linear classifiers in kernel spaces have emerged as a major topic within the field of machine learning. The kernel technique takes the linear classifier--a limited, but well-established and comprehensively studied model--and extends its applicability to a wide range of nonlinear pattern-recognition tasks such as natural language processing, machine vision, and biological sequence analysis. This book provides the first comprehensive overview of both the theory and algorithms of kernel classifiers, including the most recent developments. It begins by describing the major algorithmic advances: kernel perceptron learning, kernel Fisher discriminants, support vector machines, relevance vector machines, Gaussian processes, and Bayes point machines. Then follows a detailed introduction to learning theory, including VC and PAC-Bayesian theory, data-dependent structural risk minimization, and compression bounds. Throughout, the book emphasizes the interaction between theory and algorithms: how learning algorithms work and why. The book includes many examples, complete pseudo code of the algorithms presented, and an extensive source code library.

商品描述(中文翻譯)

在核空間中的線性分類器已成為機器學習領域的一個主要主題。核技術將線性分類器——這是一個有限但已建立且經過全面研究的模型——擴展到各種非線性模式識別任務,如自然語言處理、機器視覺和生物序列分析。本書提供了核分類器理論和算法的首個全面概述,包括最新的發展。書中首先描述了主要的算法進展:核感知器學習、核Fisher判別、支持向量機、相關向量機、高斯過程和貝葉斯點機器。接著詳細介紹了學習理論,包括VC理論和PAC-Bayesian理論、依據數據的結構風險最小化和壓縮界限。全書強調理論與算法之間的互動:學習算法如何運作以及為什麼。書中包含許多例子、所呈現算法的完整偽代碼,以及一個廣泛的源代碼庫。