Introduction to Statistical Relational Learning (Hardcover)
暫譯: 統計關聯學習導論 (精裝版)

Lise Getoor, Ben Taskar

  • 出版商: MIT
  • 出版日期: 2007-11-01
  • 售價: $2,470
  • 貴賓價: 9.5$2,347
  • 語言: 英文
  • 頁數: 608
  • 裝訂: Hardcover
  • ISBN: 0262072882
  • ISBN-13: 9780262072885
  • 相關分類: SQL
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Description

Handling inherent uncertainty and exploiting compositional structure are fundamental to understanding and designing large-scale systems. Statistical relational learning builds on ideas from probability theory and statistics to address uncertainty while incorporating tools from logic, databases, and programming languages to represent structure. In Introduction to Statistical Relational Learning, leading researchers in this emerging area of machine learning describe current formalisms, models, and algorithms that enable effective and robust reasoning about richly structured systems and data.

The early chapters provide tutorials for material used in later chapters, offering introductions to representation, inference and learning in graphical models, and logic. The book then describes object-oriented approaches, including probabilistic relational models, relational Markov networks, and probabilistic entity-relationship models as well as logic-based formalisms including Bayesian logic programs, Markov logic, and stochastic logic programs. Later chapters discuss such topics as probabilistic models with unknown objects, relational dependency networks, reinforcement learning in relational domains, and information extraction.

By presenting a variety of approaches, the book highlights commonalities and clarifies important differences among proposed approaches and, along the way, identifies important representational and algorithmic issues. Numerous applications are provided throughout.

商品描述(中文翻譯)

**描述**

處理固有的不確定性並利用組合結構是理解和設計大型系統的基本要素。統計關係學習基於概率論和統計學的概念,以解決不確定性,同時結合邏輯、數據庫和程式語言的工具來表示結構。在《統計關係學習導論》中,這一新興機器學習領域的領先研究者描述了當前的形式主義、模型和算法,這些都能有效且穩健地推理豐富結構的系統和數據。

前幾章提供了後續章節所用材料的教程,介紹了圖形模型中的表示、推理和學習。接著,書中描述了面向對象的方法,包括概率關係模型、關係馬可夫網絡和概率實體-關係模型,以及基於邏輯的形式主義,包括貝葉斯邏輯程序、馬可夫邏輯和隨機邏輯程序。後面的章節討論了如未知物體的概率模型、關係依賴網絡、關係領域中的強化學習和信息提取等主題。

通過呈現多種方法,這本書突顯了共同點並澄清了所提方法之間的重要差異,並在此過程中識別了重要的表示和算法問題。全書提供了眾多應用實例。