Artificial Intelligence: A Systems Approach from Architecture Principles to Deployment (Hardcover) (人工智慧:從架構原則到部署的系統方法)
Martinez, David R., Kifle, Bruke M.
買這商品的人也買了...
相關主題
商品描述
The first text to take a systems engineering approach to artificial intelligence (AI), from architecture principles to the development and deployment of AI capabilities.
Most books on artificial intelligence (AI) focus on a single functional building block, such as machine learning or human-machine teaming. Artificial Intelligence takes a more holistic approach, addressing AI from the view of systems engineering. The book centers on the people-process-technology triad that is critical to successful development of AI products and services. Development starts with an AI design, based on the AI system architecture, and culminates with successful deployment of the AI capabilities. Directed toward AI developers and operational users, this accessibly written volume of the MIT Lincoln Laboratory Series can also serve as a text for undergraduate seniors and graduate-level students and as a reference book.
Key features:
- In-depth look at modern computing technologies
- Systems engineering description and means to successfully undertake an AI product or service development through deployment
- Existing methods for applying machine learning operations (MLOps)
- AI system architecture including a description of each of the AI pipeline building blocks
- Challenges and approaches to attend to responsible AI in practice
- Tools to develop a strategic roadmap and techniques to foster an innovative team environment
- Multiple use cases that stem from the authors' MIT classes, as well as from AI practitioners, AI project managers, early-career AI team leaders, technical executives, and entrepreneurs
- Exercises and Jupyter notebook examples
商品描述(中文翻譯)
這是一本首次以系統工程方法探討人工智慧(AI)的書籍,從架構原則到AI能力的開發和部署。
大多數關於人工智慧(AI)的書籍都專注於單一功能模塊,例如機器學習或人機協作。《人工智慧》採用了更全面的方法,從系統工程的角度來討論AI。本書著重於人-過程-技術三位一體,這對於成功開發AI產品和服務至關重要。開發始於基於AI系統架構的AI設計,並以成功部署AI能力為終點。本書針對AI開發人員和操作使用者,以易於理解的方式撰寫,同時也可作為本科高年級生和研究生的教材,以及參考書。
主要特點包括:
- 深入研究現代計算技術
- 系統工程描述和成功進行AI產品或服務開發至部署的方法
- 應用機器學習操作(MLOps)的現有方法
- AI系統架構,包括對每個AI流程模塊的描述
- 解決實際負責任AI的挑戰和方法
- 發展戰略路線圖的工具和促進創新團隊環境的技巧
- 來自作者的MIT課程以及AI從業人員、AI項目經理、初級AI團隊領導者、技術高管和企業家的多個用例
- 練習和Jupyter筆記本示例
作者簡介
David R. Martinez is a laboratory fellow at the MIT Lincoln Laboratory and the lead instructor for MIT's "AI Strategies and Roadmap: Systems Engineering Approach to AI Development and Deployment" and "AI and ML: Leading Business Growth" courses.
Bruke Mesfin Kifle is management consultant and former AI product manager at Microsoft Turing. He co-instructs MIT's "AI Strategies and Roadmap " course.
作者簡介(中文翻譯)
David R. Martinez 是麻省理工學院林肯實驗室的實驗室研究員,也是麻省理工學院「AI策略與路線圖:系統工程方法應用於AI開發與部署」和「AI與機器學習:引領業務成長」課程的主要講師。
Burke Mesfin Kifle 是管理顧問,曾在微軟圖靈擔任AI產品經理。他與他人共同教授麻省理工學院的「AI策略與路線圖」課程。