Microprediction: Building an Open AI Network

Cotton, Peter

  • 出版商: Summit Valley Press
  • 出版日期: 2022-11-08
  • 售價: $1,120
  • 貴賓價: 9.5$1,064
  • 語言: 英文
  • 頁數: 232
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 0262047322
  • ISBN-13: 9780262047326
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

How a web-scale network of autonomous micromanagers can challenge the AI revolution and combat the high cost of quantitative business optimization.

The artificial intelligence (AI) revolution is leaving behind small businesses and organizations that cannot afford in-house teams of data scientists. In Microprediction, Peter Cotton examines the repeated quantitative tasks that drive business optimization from the perspectives of economics, statistics, decision making under uncertainty, and privacy concerns. He asks what things currently described as AI are not "microprediction," whether microprediction is an individual or collective activity, and how we can produce and distribute high-quality microprediction at low cost. The world is missing a public utility, he concludes, while companies are missing an important strategic approach that would enable them to benefit--and also give back.

In an engaging, colloquial style, Cotton argues that market-inspired "superminds" are likely to be very effective compared with other orchestration mechanisms in the domain of microprediction. He presents an ambitious yet practical alternative to the expensive "artisan" data science that currently drains money from firms. Challenging the machine learning revolution and exposing a contradiction at its heart, he offers engineers a new liberty: no longer reliant on quantitative experts, they are free to create intelligent applications using general-purpose application programming interfaces (APIs) and libraries. He describes work underway to encourage this approach, one that he says might someday prove to be as valuable to businesses--and society at large--as the internet.

商品描述(中文翻譯)

如何建立一個由自主微管理者組成的網絡,以挑戰人工智慧革命並應對量化業務優化的高成本。

人工智慧(AI)革命正在拋棄那些無法負擔內部數據科學團隊的小型企業和組織。在《微預測》一書中,彼得·科頓(Peter Cotton)從經濟學、統計學、不確定性下的決策和隱私問題的角度,探討了推動業務優化的重複量化任務。他問道,目前被描述為人工智慧的事物中,哪些不是“微預測”?微預測是個體還是集體活動?我們如何以低成本生產和分發高質量的微預測?他得出結論,世界缺少一個公共事業,而企業缺少一種重要的戰略方法,使他們能夠受益,同時也回饋社會。

科頓以引人入勝、口語化的風格論述,認為市場激勵的“超級智慧”在微預測領域中可能比其他協調機制更有效。他提出了一種雄心勃勃但實際可行的替代方案,以取代目前從企業中抽取資金的昂貴的“工匠”數據科學。他挑戰機器學習革命,揭示了其中的矛盾,並為工程師提供了新的自由:不再依賴於量化專家,他們可以自由地使用通用應用程序編程接口(API)和庫來創建智能應用程序。他描述了正在進行的工作,以鼓勵這種方法,他認為這種方法有朝一日可能對企業和整個社會同樣有價值,就像互聯網一樣。

作者簡介

Peter Cotton is a Senior Vice President and Chief Data Scientist at Intech Investment Management LLC.

作者簡介(中文翻譯)

Peter Cotton 是 Intech Investment Management LLC 的高級副總裁兼首席數據科學家。