Quantitative Biology: Theory, Computational Methods, and Models (The MIT Press)
- 出版商: MIT
- 出版日期: 2018-08-21
- 售價: $2,450
- 貴賓價: 9.8 折 $2,401
- 語言: 英文
- 頁數: 728
- 裝訂: Hardcover
- ISBN: 0262038080
- ISBN-13: 9780262038089
-
相關分類:
大數據 Big-data、數值分析 Numerical-analysis、生物資訊 Bioinformatics
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,590$1,511 -
$875Analysis of Biological Networks (Hardcover)
-
$2,300$2,185 -
$600$570 -
$650$585 -
$290$284 -
$480$379 -
$2,330$2,214 -
$1,470Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Second Edition
-
$450$356 -
$680$537 -
$580$458 -
$690$587 -
$680$537 -
$1,370$1,302 -
$380$342 -
$500$395 -
$2,100$2,058 -
$1,200$948 -
$540$486 -
$540$529 -
$560$437 -
$680$537 -
$580$452 -
$830$789
相關主題
商品描述
An introduction to the quantitative modeling of biological processes, presenting modeling approaches, methodology, practical algorithms, software tools, and examples of current research.
The quantitative modeling of biological processes promises to expand biological research from a science of observation and discovery to one of rigorous prediction and quantitative analysis. The rapidly growing field of quantitative biology seeks to use biology's emerging technological and computational capabilities to model biological processes. This textbook offers an introduction to the theory, methods, and tools of quantitative biology.
The book first introduces the foundations of biological modeling, focusing on some of the most widely used formalisms. It then presents essential methodology for model-guided analyses of biological data, covering such methods as network reconstruction, uncertainty quantification, and experimental design; practical algorithms and software packages for modeling biological systems; and specific examples of current quantitative biology research and related specialized methods. Most chapters offer problems, progressing from simple to complex, that test the reader's mastery of such key techniques as deterministic and stochastic simulations and data analysis. Many chapters include snippets of code that can be used to recreate analyses and generate figures related to the text. Examples are presented in the three popular computing languages: Matlab, R, and Python. A variety of online resources supplement the the text.
The editors are long-time organizers of the Annual q-bio Summer School, which was founded in 2007. Through the school, the editors have helped to train more than 400 visiting students in Los Alamos, NM, Santa Fe, NM, San Diego, CA, Albuquerque, NM, and Fort Collins, CO. This book is inspired by the school's curricula, and most of the contributors have participated in the school as students, lecturers, or both.
Contributors
John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michal Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienaltowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber
商品描述(中文翻譯)
一本介紹生物過程量化建模的書籍,介紹建模方法、方法論、實用演算法、軟體工具和當前研究的例子。
生物過程的量化建模承諾將生物研究從觀察和發現的科學擴展為嚴謹的預測和量化分析。快速發展的量化生物學領域旨在利用生物學的新興技術和計算能力來建模生物過程。本教科書介紹了量化生物學的理論、方法和工具。
該書首先介紹了生物建模的基礎,重點介紹了一些最常用的形式主義。然後介紹了模型引導生物數據分析的基本方法,包括網絡重建、不確定性量化和實驗設計等方法;用於建模生物系統的實用演算法和軟體包;以及當前量化生物學研究和相關專門方法的具體例子。大多數章節都提供了問題,從簡單到複雜,測試讀者對確定性和隨機模擬以及數據分析等關鍵技術的掌握程度。許多章節包含了可以用於重現分析和生成與文本相關的圖形的程式碼片段。例子以三種流行的計算語言呈現:Matlab、R和Python。各種在線資源補充了本書的內容。
編者是長期組織年度q-bio夏季學校的人,該學校成立於2007年。通過該學校,編者幫助培訓了400多名訪問學生,地點包括新墨西哥州洛斯阿拉莫斯、新墨西哥州聖菲、加利福尼亞州聖地亞哥、新墨西哥州阿爾伯克基和科羅拉多州福特柯林斯。本書的靈感來自該學校的課程,大多數貢獻者都曾作為學生、講師或兩者參與該學校。
貢獻者:
John H. Abel, Roberto Bertolusso, Daniela Besozzi, Michael L. Blinov, Clive G. Bowsher, Fiona A. Chandra, Paolo Cazzaniga, Bryan C. Daniels, Bernie J. Daigle, Jr., Maciej Dobrzynski, Jonathan P. Doye, Brian Drawert, Sean Fancer, Gareth W. Fearnley, Dirk Fey, Zachary Fox, Ramon Grima, Andreas Hellander, Stefan Hellander, David Hofmann, Damian Hernandez, William S. Hlavacek, Jianjun Huang, Tomasz Jetka, Dongya Jia, Mohit Kumar Jolly, Boris N. Kholodenko, Markek Kimmel, Michal Komorowski, Ganhui Lan, Heeseob Lee, Herbert Levine, Leslie M Loew, Jason G. Lomnitz, Ard A. Louis, Grant Lythe, Carmen Molina-París, Ion I. Moraru, Andrew Mugler, Brian Munsky, Joe Natale, Ilya Nemenman, Karol Nienaltowski, Marco S. Nobile, Maria Nowicka, Sarah Olson, Alan S. Perelson, Linda R. Petzold, Sreenivasan Ponnambalam, Arya Pourzanjani, Ruy M. Ribeiro, William Raymond, William Raymond, Herbert M. Sauro, Michael A. Savageau, Abhyudai Singh, James C. Schaff, Boris M. Slepchenko, Thomas R. Sokolowski, Petr Šulc, Andrea Tangherloni, Pieter Rein ten Wolde, Philipp Thomas, Karen Tkach Tuzman, Lev S. Tsimring, Dan Vasilescu, Margaritis Voliotis, Lisa Weber