Machine Learning for Data Streams: with Practical Examples in MOA (Adaptive Computation and Machine Learning series)
暫譯: 數據流的機器學習:以 MOA 實作範例為例(自適應計算與機器學習系列)
Albert Bifet, Ricard Gavaldà, Geoff Holmes, Bernhard Pfahringer
- 出版商: MIT
- 出版日期: 2018-03-02
- 定價: $1,980
- 售價: 9.0 折 $1,782
- 語言: 英文
- 頁數: 288
- 裝訂: Hardcover
- ISBN: 0262037793
- ISBN-13: 9780262037792
-
相關分類:
Machine Learning
-
相關翻譯:
數據流機器學習:MOA (Machine Learning for Data Streams) (簡中版)
立即出貨
商品描述
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework.
Today many information sources -- including sensor networks, financial markets, social networks, and healthcare monitoring -- are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations.
The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
商品描述(中文翻譯)
針對資料流挖掘和即時分析的任務與技術的實作方法,並以 MOA 這個流行的免費開源軟體框架為例。
如今,許多資訊來源——包括感測器網路、金融市場、社交網路和健康監測——都被稱為資料流,這些資料以高速度順序到達。分析必須在即時進行,並且只能使用部分資料,無法儲存整個資料集。本書介紹了用於資料流挖掘和即時分析的演算法和技術。採取實作方法,本書使用 MOA(Massive Online Analysis)這個流行的免費開源軟體框架來演示這些技術,讓讀者在閱讀解釋後能夠實際嘗試這些技術。
本書首先簡要介紹主題,涵蓋大數據挖掘、挖掘資料流的基本方法論,以及 MOA 的簡單範例。接下來是更詳細的討論,包含有關草圖技術、變化、分類、集成方法、回歸、聚類和頻繁模式挖掘的章節。這些章節大多數都包括練習、基於 MOA 的實驗課程,或兩者皆有。最後,本書討論了 MOA 軟體,涵蓋 MOA 圖形使用者介面、命令列、API 的使用,以及在 MOA 中開發新方法。本書將成為希望將資料流挖掘作為工具的讀者、從事創新或資料流挖掘的研究人員,以及希望為 MOA 創建新演算法的程式設計師的重要參考資料。