Perturbations, Optimization, and Statistics (Neural Information Processing series)
暫譯: 擾動、優化與統計(神經資訊處理系列)

Tamir Hazan (Editor), George Papandreou (Editor), Daniel Tarlow (Editor)

  • 出版商: MIT
  • 出版日期: 2016-12-23
  • 售價: $2,100
  • 貴賓價: 9.8$2,058
  • 語言: 英文
  • 頁數: 412
  • 裝訂: Hardcover
  • ISBN: 0262035642
  • ISBN-13: 9780262035644
  • 相關分類: 機率統計學 Probability-and-statistics
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview.

Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.

商品描述(中文翻譯)

在幾乎所有的機器學習中,必須根據當前的知識做出決策。令人驚訝的是,即使在監督學習的環境中,做出被認為是最佳決策的行為也不一定是最佳策略。關於在不同規則下學習的新興研究,對決策和學習程序施加擾動。這些方法提供了簡單且高效的學習規則,並具有改進的理論保證。本書描述了在機器學習中開發的基於擾動的方法,以增強具有強大統計保證的新優化方法,為讀者提供最前沿的概述。

各章節探討了在擾動框架內出現的最新建模思想,包括 Perturb & MAP、聚集(herding)以及使用神經網絡將通用噪聲映射到高度結構化數據的分佈。它們描述了擾動模型的新學習程序,包括改進的 EM 演算法和一種旨在將模型樣本的矩與數據的矩匹配的學習演算法。它們討論了擾動模型與其傳統對應物之間的關係,其中一章顯示擾動觀點可以在傳統環境中導致新演算法的產生。並且它們考慮了在神經網絡中的基於擾動的正則化,提供了對 dropout 的更完整理解,並在深度神經網絡的背景下研究擾動。