Mining the Biomedical Literature (Computational Molecular Biology)
暫譯: 生物醫學文獻挖掘(計算分子生物學)

Hagit Shatkay, Mark Craven

  • 出版商: MIT
  • 出版日期: 2012-08-10
  • 售價: $700
  • 貴賓價: 9.5$665
  • 語言: 英文
  • 頁數: 150
  • 裝訂: Hardcover
  • ISBN: 0262017695
  • ISBN-13: 9780262017695
  • 海外代購書籍(需單獨結帳)

商品描述

The introduction of high-throughput methods has transformed biology into a data-rich science. Knowledge about biological entities and processes has traditionally been acquired by thousands of scientists through decades of experimentation and analysis. The current abundance of biomedical data is accompanied by the creation and quick dissemination of new information. Much of this information and knowledge, however, is represented only in text form--in the biomedical literature, lab notebooks, Web pages, and other sources. Researchers' need to find relevant information in the vast amounts of text has created a surge of interest in automated text-analysis.

In this book, Hagit Shatkay and Mark Craven offer a concise and accessible introduction to key ideas in biomedical text mining. The chapters cover such topics as the relevant sources of biomedical text; text-analysis methods in natural language processing; the tasks of information extraction, information retrieval, and text categorization; and methods for empirically assessing text-mining systems. Finally, the authors describe several applications that recognize entities in text and link them to other entities and data resources, support the curation of structured databases, and make use of text to enable further prediction and discovery.

商品描述(中文翻譯)

高通量方法的引入使生物學轉變為一個數據豐富的科學。關於生物實體和過程的知識傳統上是由數千名科學家通過數十年的實驗和分析獲得的。目前生物醫學數據的豐富伴隨著新信息的創建和快速傳播。然而,這些信息和知識中的大部分僅以文本形式表示——在生物醫學文獻、實驗室筆記、網頁和其他來源中。研究人員在大量文本中尋找相關信息的需求引發了對自動文本分析的濃厚興趣。

在本書中,Hagit Shatkay 和 Mark Craven 提供了一個簡明易懂的生物醫學文本挖掘關鍵概念的介紹。各章節涵蓋了生物醫學文本的相關來源;自然語言處理中的文本分析方法;信息提取、信息檢索和文本分類的任務;以及實證評估文本挖掘系統的方法。最後,作者描述了幾個應用,這些應用能夠識別文本中的實體並將其鏈接到其他實體和數據資源,支持結構化數據庫的管理,並利用文本來促進進一步的預測和發現。