Introduction to Machine Learning
暫譯: 機器學習導論

Ethem Alpaydin

  • 出版商: MIT
  • 出版日期: 2004-10-01
  • 售價: $1,264
  • 語言: 英文
  • 頁數: 445
  • 裝訂: Hardcover
  • ISBN: 0262012111
  • ISBN-13: 9780262012119
  • 相關分類: Machine Learning
  • 無法訂購

買這商品的人也買了...

相關主題

商品描述

Description:

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, recognize faces or spoken speech, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. It discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The book can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.

After an introduction that defines machine learning and gives examples of machine learning applications, the book covers supervised learning, Bayesian decision theory, parametric methods, multivariate methods, dimensionality reduction, clustering, nonparametric methods, decision trees, linear discrimination, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, combining multiple learners, and reinforcement learning.

Ethem Alpaydin is Professor in the Department of Computer Engineering at Bogaziçi University, Istanbul.

商品描述(中文翻譯)

**描述:**

機器學習的目標是編程電腦使用示例數據或過去經驗來解決特定問題。目前已經存在許多成功的機器學習應用,包括分析過去銷售數據以預測客戶行為、識別面孔或語音、優化機器人行為以便以最少的資源完成任務,以及從生物信息學數據中提取知識。《Introduction to Machine Learning》是一本關於該主題的綜合教科書,涵蓋了通常不包括在入門機器學習書籍中的廣泛主題。它討論了許多基於不同領域的方法,包括統計學、模式識別、神經網絡、人工智慧、信號處理、控制和數據挖掘,以便對機器學習問題和解決方案進行統一的處理。所有學習算法都被解釋,使學生能夠輕鬆地從書中的方程式轉移到計算機程序。這本書適合已完成計算機編程、概率、微積分和線性代數課程的高年級本科生和研究生使用。對於關心機器學習方法應用的工程師來說,這本書也會引起他們的興趣。

在介紹機器學習的定義和機器學習應用示例之後,這本書涵蓋了監督學習、貝葉斯決策理論、參數方法、多變量方法、降維、聚類、非參數方法、決策樹、線性判別、多層感知器、局部模型、隱馬爾可夫模型、評估和比較分類算法、結合多個學習者以及強化學習。

Ethem Alpaydin是伊斯坦堡博加齊大學計算機工程系的教授。