The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Paperback)
暫譯: 固體對稱的數學理論:點群與空間群的表示理論 (平裝本)
Christopher Bradley, Arthur Cracknell
- 出版商: Oxford University
- 出版日期: 2010-02-22
- 售價: $4,580
- 貴賓價: 9.5 折 $4,351
- 語言: 英文
- 頁數: 760
- 裝訂: Paperback
- ISBN: 0199582580
- ISBN-13: 9780199582587
無法訂購
買這商品的人也買了...
-
$680$646 -
$880$695 -
$620$527 -
$780$663 -
$520$411 -
$630$498 -
$580$493 -
$480$379 -
$590$502 -
$1,200$948 -
$580$452 -
$360$281 -
$550$550 -
$780$616 -
$380$323 -
$580$458 -
$560$476 -
$450$315 -
$590$502 -
$580$458 -
$500$395 -
$360$238 -
$320$211 -
$450$405 -
$680$578
相關主題
商品描述
*Elegance of mathematical presentation
*Readability
*Clarity of diagrams
*Completeness of tables
*Consideration of Shubnikov (black and white) groups.
This book gives the complete theory of the irreducible representations of the crystallographic point groups and space groups. This is important in the quantum-mechanical study of a particle or quasi-particle in a molecule or crystalline solid because the eigenvalues and eigenfunctions of a system belong to the irreducible representations of the group of symmetry operations of that system. The theory is applied to give complete tables of these representations for all the 32 point groups and 230 space groups, including the double-valued representations. For the space groups, the group of the symmetry operations of the k vector and its irreducible representations are given for all the special points of symmetry, lines of symmetry and planes of symmetry in the Brillouin zone. Applications occur in the electronic band structure, phonon dispersion relations and selection rules for particle-quasiparticle interactions in solids. The theory is extended to the corepresentations of the Shubnikov (black and white) point groups and space groups.
Table Of Contents
1: Symmetry and the Solid State
2: Symmetry-Adapted Functions for the Point Groups
3: Space Groups
4: The Representations of a Group in Terms of the Representations of an Invariant Subgroup
5: The Single-Valued Representations of the 230 Space Groups
6: The Double-Valued Representations of the 32 Point Groups and the 230 Space Groups
7: The Magnetic Groups and their Corepresentations
商品描述(中文翻譯)
*數學表達的優雅性
*可讀性
*圖表的清晰度
*表格的完整性
*考慮 Shubnikov(黑白)群。
本書提供了晶體學點群和空間群的不可約表示的完整理論。這在量子力學中研究分子或晶體固體中的粒子或準粒子時非常重要,因為系統的特徵值和特徵函數屬於該系統對稱操作群的不可約表示。該理論應用於提供所有 32 個點群和 230 個空間群的這些表示的完整表格,包括雙值表示。對於空間群,k 向量的對稱操作群及其不可約表示在布里淵區的所有特殊對稱點、對稱線和對稱平面中給出。應用出現在電子能帶結構、聲子色散關係以及固體中粒子-準粒子相互作用的選擇規則中。該理論擴展到 Shubnikov(黑白)點群和空間群的共表示。
目錄
1: 對稱與固態
2: 點群的對稱適應函數
3: 空間群
4: 根據不變子群的表示來表示一個群的表示
5: 230 個空間群的單值表示
6: 32 個點群和 230 個空間群的雙值表示
7: 磁群及其共表示