The Theory of Open Quantum Systems (Paperback)
暫譯: 開放量子系統理論 (平裝本)
Heinz-Peter Breuer, Francesco Petruccione
- 出版商: Oxford University
- 出版日期: 2007-03-29
- 售價: $3,870
- 貴賓價: 9.5 折 $3,677
- 語言: 英文
- 頁數: 636
- 裝訂: Paperback
- ISBN: 0199213909
- ISBN-13: 9780199213900
-
相關分類:
量子 Quantum
無法訂購
買這商品的人也買了...
-
$480$456 -
$1,200$948 -
$280$274 -
$520$411 -
$4,100$3,895 -
$1,333Fundamentals of Probability: with Stochastic Processes, 3/e (Hardcover)
相關主題
商品描述
‧Self-contained introduction.
‧Combines fundamental questions and specific applications.
‧Develops new mathematical techniques.
‧Explains computer simulation techniques.
‧Numerous specific examples.
This book treats the central physical concepts and mathematical techniques used to investigate the dynamics of open quantum systems. To provide a self-contained presentation the text begins with a survey of classical probability theory and with an introduction into the foundations of quantum mechanics with particular emphasis on its statistical interpretation. The fundamentals of density matrix theory, quantum Markov processes and dynamical semigroups are developed. The most important master equations used in quantum optics and in the theory of quantum Brownian motion are applied to the study of many examples. Special attention is paid to the theory of environment induced decoherence, its role in the dynamical description of the measurement process and to the experimental observation of decohering Schrodinger cat states.
The book includes the modern formulation of open quantum systems in terms of stochastic processes in Hilbert space. Stochastic wave function methods and Monte Carlo algorithms are designed and applied to important examples from quantum optics and atomic physics, such as Levy statistics in the laser cooling of atoms, and the damped Jaynes-Cummings model. The basic features of the non-Markovian quantum behaviour of open systems are examined on the basis of projection operator techniques. In addition, the book expounds the relativistic theory of quantum measurements and discusses several examples from a unified perspective, e.g. non-local measurements and quantum teleportation. Influence functional and super-operator techniques are employed to study the density matrix theory in quantum electrodynamics and applications to the destruction of quantum coherence are presented.
The text addresses graduate students and lecturers in physics and applied mathematics, as well as researchers with interests in fundamental questions in quantum mechanics and its applications. Many analytical methods and computer simulation techniques are developed and illustrated with the help of numerous specific examples. Only a basic understanding of quantum mechanics and of elementary concepts of probability theory is assumed.
Table Of Contents
Preface
Acknowledgements
Part 1: Probability in Classical and Quantum Physics
1. Classical probability theory and stochastic processes
2. Quantum Probability
Part 2: Density Matrix Theory
3. Quantum Master Equations
4. Decoherence
Part 3: Stochastic Processes in Hilbert Space
5. Probability distributions on Hilbert space
6. Stochastic dynamics in Hilbert space
7. The stochastic simulation method
8. Applications to quantum optical systems
Part 4: Non-Markovian Quantum Processes
9. Projection operator techniques
10. Non-Markovian dynamics in physical systems
Part 5: Relativistic Quantum Processes
11. Measurements in relativistic quantum mechanics
12. Open quantum electrodynamics
商品描述(中文翻譯)
‧自成一體的介紹。
‧結合基本問題與具體應用。
‧發展新的數學技術。
‧解釋計算機模擬技術。
‧提供眾多具體範例。
本書探討用於研究開放量子系統動力學的核心物理概念和數學技術。為了提供自成一體的呈現,文本首先回顧古典概率論,並介紹量子力學的基礎,特別強調其統計解釋。發展了密度矩陣理論、量子馬可夫過程和動態半群的基本原理。最重要的主方程式應用於量子光學和量子布朗運動理論的研究,並用於多個範例的研究。特別關注環境誘導的去相干理論、其在測量過程動態描述中的角色,以及去相干的薛丁格貓狀態的實驗觀察。
本書包括開放量子系統在希爾伯特空間中以隨機過程的現代表述。隨機波函數方法和蒙地卡羅算法被設計並應用於量子光學和原子物理中的重要範例,例如原子激光冷卻中的Levy統計和阻尼的Jaynes-Cummings模型。基於投影算子技術,檢視開放系統的非馬可夫量子行為的基本特徵。此外,本書闡述了相對論量子測量理論,並從統一的角度討論幾個範例,例如非局部測量和量子傳送。影響功能和超算子技術被用來研究量子電動力學中的密度矩陣理論,並呈現對量子相干性破壞的應用。
本書針對物理學和應用數學的研究生和講師,以及對量子力學基本問題及其應用感興趣的研究人員。許多分析方法和計算機模擬技術被開發並通過眾多具體範例進行說明。僅假設讀者對量子力學和基本概率論概念有基本理解。
目錄
前言
致謝
第一部分:古典與量子物理中的概率
1. 古典概率論與隨機過程
2. 量子概率
第二部分:密度矩陣理論
3. 量子主方程
4. 去相干
第三部分:希爾伯特空間中的隨機過程
5. 希爾伯特空間上的概率分佈
6. 希爾伯特空間中的隨機動力學
7. 隨機模擬方法
8. 在量子光學系統中的應用
第四部分:非馬可夫量子過程
9. 投影算子技術
10. 物理系統中的非馬可夫動力學
第五部分:相對論量子過程
11. 相對論量子力學中的測量
12. 開放量子電動力學