Path Integrals in Quantum Mechanics (Paperback)
暫譯: 量子力學中的路徑積分 (平裝本)
Jean Zinn-Justin
- 出版商: Oxford University
- 出版日期: 2010-09-03
- 售價: $1,050
- 貴賓價: 9.8 折 $1,029
- 語言: 英文
- 頁數: 336
- 裝訂: Paperback
- ISBN: 0198566751
- ISBN-13: 9780198566755
-
相關分類:
量子 Quantum
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$6,550$6,223 -
$1,980$1,881 -
$1,150$1,127 -
$1,460$1,431 -
$1,480$1,450 -
$880$862 -
$2,980$2,831 -
$1,575$1,544 -
$6,400$6,080 -
$4,270$4,057 -
$4,100$3,895 -
$960R Deep Learning Essentials (Paperback)
-
$2,420$2,299 -
$11,970$11,372 -
$4,650$4,418 -
$798Deep Learning with Hadoop (Paperback)
-
$3,383Translational Bioinformatics and Systems Biology Methods for Personalized Medicine (Paperback)
商品描述
The main goal of this work is to familiarize the reader with a tool, the path integral, that offers an alternative point of view on quantum mechanics, but more important, under a generalized form, has become the key to a deeper understanding of quantum field theory and its applications, which extend from particle physics to phase transitions or properties of quantum gases.
Path integrals are mathematical objects that can be considered as generalizations to an infinite number of variables, represented by paths, of usual integrals. They share the algebraic properties of usual integrals, but have new properties from the viewpoint of analysis.
Path integrals are powerful tools for the study of quantum mechanics, because they emphasize very explicitly the correspondence between classical and quantum mechanics.
Physical quantities are expressed as averages over all possible paths but, in the semi-classical limit, the leading contributions come from paths close to classical paths. Thus, path integrals lead to an intuitive understanding and simple calculations of physical quantities in the semi-classical limit. We will illustrate this observation with scattering processes, spectral properties or barrier penetration.
The formulation of quantum mechanics based on path integrals, if it seems mathematically more complicated than the usual formulation based on partial differential equations, is well adapted to systems with many degrees of freedom, where a formalism of Schrodinger type is much less useful. It allows a simple construction of a many-body theory both for bosons and fermions.
商品描述(中文翻譯)
這項工作的主要目標是讓讀者熟悉一種工具——路徑積分,它提供了一種對量子力學的替代觀點,但更重要的是,在一種廣義形式下,它已成為深入理解量子場論及其應用的關鍵,這些應用從粒子物理學延伸到相變或量子氣體的性質。
路徑積分是數學對象,可以被視為對無限多變數的廣義化,這些變數由路徑表示,與常規積分相比,它們共享常規積分的代數性質,但從分析的角度來看,具有新的性質。
路徑積分是研究量子力學的強大工具,因為它們非常明確地強調了經典力學與量子力學之間的對應關係。
物理量被表達為所有可能路徑的平均值,但在半經典極限下,主要貢獻來自於接近經典路徑的路徑。因此,路徑積分導致了對物理量的直觀理解和簡單計算,特別是在半經典極限下。我們將用散射過程、光譜性質或障礙穿透來說明這一觀察。
基於路徑積分的量子力學表述,雖然在數學上看起來比基於偏微分方程的常規表述更為複雜,但它非常適合具有多自由度的系統,在這種情況下,薛丁格類型的形式主義就不那麼有用。它允許對玻色子和費米子進行簡單的多體理論構建。