Principles of Semiconductor Devices (Hardcover) (書況略舊有些許黴斑,不介意在下單)
Sima Dimitrijev
- 出版商: Oxford University
- 出版日期: 2005-10-27
- 售價: $1,200
- 貴賓價: 9.8 折 $1,176
- 語言: 英文
- 頁數: 578
- 裝訂: Hardcover
- ISBN: 0195161130
- ISBN-13: 9780195161137
-
相關分類:
半導體
-
其他版本:
Principles of Semiconductor Devices, 2/e (Hardcover)
買這商品的人也買了...
-
$590$466 -
$990$782 -
$1,450$1,421 -
$880$581 -
$780$702 -
$580$493 -
$450$351 -
$650$507 -
$550$468 -
$580$493 -
$880$748 -
$680$578 -
$720$612 -
$650$553 -
$1,250$1,225 -
$490$382 -
$790$616 -
$580$522 -
$880$616 -
$1,930$1,834 -
$620$490 -
$1,744Semiconductor Devices : Physics and Technology, 3/e (Hardcover)
-
$1,968Introduction to Semiconductor Lasers for Optical Communications: An Applied Approach (Paperback)
-
$250區塊鏈金融
-
$1,380$1,352
相關主題
商品描述
Description:
Quantum mechanical phenomena-including energy bands, energy gaps, holes, and effective mass-constitute the majority of properties unique to semiconductor materials. Understanding how these properties affect the electrical characteristics of semiconductors is vital for engineers working with today's nanoscale devices.
Designed for upper-level undergraduate and graduate courses, Principles of Semiconductor Devices covers the dominant practical applications of semiconductor device theory and applies quantum mechanical concepts and equations to develop the energy-band model. The text presents quantum mechanics through examples related to the energy-band model, providing students with a deeper understanding of the energy-band diagrams used to explain semiconductor device operation. The semiconductor theory is directly linked to the electronic layout and design of integrated circuits.
The author has divided the text into four parts. Part I explains semiconductor physics, and Part II presents the principles of operation and modeling of the fundamental junctions and transistors. Part III discusses the diode, MOSFET, and BJT topics that are needed for circuit design. Part IV introduces photonic devices, microwave FETs, negative-resistance diodes, and power devices. The chapters and the sections in each chapter are organized hierarchically. Core material is presented first, followed by advanced topics, allowing instructors to select more rigorous, design-related topics as they see fit.
Table of Contents:
All chapters end with a Summary, Problems, and Review Questions.PART I: INTRODUCTION TO SEMICONDUCTORS1. Semiconductor Crystals: Atomic-Bond Model1.1. Crystal Lattices1.1.1. Unit Cell1.1.2. Planes and Directions1.1.3. Atomic Bonds1.2. Current Carriers1.2.1. Two Types of Current Carriers in Semiconductors1.2.2. N-Type and P-Type Doping1.2.3. Electroneutrality Equation1.2.4. Electron and Hole Generation and Recombination in Thermal Equilibrium1.3 Basics of Crystal Growth and Doping Techniques.1.3.1 Crystal-Growth Techniques.1.3.2 Doping Techniques
.2. Quantum Mechanics and Energy-Band Model2.1. Electrons as Waves2.1.1. De Broglie Relationship between Particle and Wave Properties2.1.2. Wave Function and Wave Packet2.1.3. Schrodinger Equation2.2. Energy Levels in Atoms and Energy Bands in Crystals2.2.1. Atomic Structure2.2.2. Energy Bands in Metals2.2.3. Energy Gap and Energy Bands in Semiconductors and Insulators2.3. Electrons and Holes as Particles2.3.1 Effective Mass and Real E-K Diagrams.2.3.2 The Question of Electron Size: The Uncertainty Principle.2.3.3 Density of Electron States.2.4. Population of Electron States: Concentrations of Electrons and Holes2.4.1. Fermi-Dirac Distribution2.4.2. Maxwell-Boltzmann Approximation and Effective Density of States2.4.3 Fermi Potential and Doping.2.4.4 Nonequilibrium Carrier Concentrations and Quasi-Fermi Levels
.3. Drift3.1. Energy Bands with Applied Electric Field3.1.1. Energy-Band Presentation of Drift Current3.1.2. Resistance and Power Dissipation due to Carrier Scattering3.2. Ohm's Law, Sheet Resistance, and Conductivity3.2.1. Designing Integrated-Circuit Resistors3.2.2. Differential Form of Ohm's Law3.2.3. Conductivity Ingredients3.3. Carrier Mobility3.3.1 Thermal and Drift Velocities.3.3.2 Mobility Definition.3.3.3 Scattering Time and Scattering Cross Section.3.3.4 Mathieson's Rule.3.3.5 Hall Effect
.4. Diffusion4.1. Diffusion-Current Equation4.2. Diffusion Coefficient4.2.1. Einstein Relationship4.2.2. Haynes-Shockley Experiment4.2.3. Arrhenius Equation4.3. Basic Continuity Equation5. Generation and Recombination5.1. Generation and Recombination Mechanisms5.2. General Form of the Continuity Equation5.2.1. Recombination and Generation Rates5.2.2. Minority-Carrier Lifetime5.2.3. Diffusion Length5.3. Generation and Recombination Physics and Shockley-Read-Hall (SRH) Theory5.3.1. Capture and Emission Rates in Thermal Equilibrium5.3.2. Steady-State Equation for the Effective Thermal Generation/Recombination Rate5.3.3. Special Cases5.3.4. Surface Generation and RecombinationPART II: FUNDAMENTAL DEVICE STRUCTURES6. P-N Junction6.1 P-N Junction Principles.6.1.1. P-N Junction in Thermal Equilibrium: Built-In Voltage.6.1.2. Reverse-Biased P-N Junction6.1.3. Forward-Biased P-N Junction6.1.4. Breakdown Phenomena6.1.4.1. Avalanche Breakdown6.1.4.2. Tunneling Breakdown6.2. DC Model6.2.1. Basic Current-Voltage (I-V) Equation6.2.2. Important Second-Order Effects6.2.3. Temperature Effects6.3. Capacitance of Reverse-Biased P-N Junction6.3.1. C-V Dependence6.3.2. Depletion-Layer Width: Solving the Poisson Equation6.3.3. SPICE Model for the Depletion-Layer Capacitance6.4. Stored-Charge Effects6.4.1. Stored Charge and Transit Time6.4.2. Relationship between the Transit Time and the Minority-Carrier Lifetime6.4.3 Switching Characteristics: Reverse-Recovery Time
.7. Metal-Semiconductor Contact and MOS Capacitor7.1. Metal-Semiconductor Contact7.1.1. Schottky Diode: Rectifying Metal-Semiconductor Contact7.1.2. Ohmic Metal-Semiconductor Contacts7.2. MOS Capacitor7.2.1. Properties of the Gate Oxide and the Oxide-Semiconductor Interface7.2.2. C-V Curve and the Surface-Potential Dependence on Gate Voltage7.2.3 Energy-Band Diagrams.7.2.4 Flat-Band Capacitance and Debye Length
.8. MOSFET8.1. MOSFET Principles8.1.1. MOSFET Structure8.1.2. MOSFET as a Voltage-Controlled Switch8.1.3 The Threshold Voltage and the Body Effect.8.1.4 MOSFET as a Voltage-Controlled Current Source: Mechanisms of Current Saturation.8.2. Principal Current-Voltage Characteristics and Equations8.2.1. SPICE Level 1 Model8.2.2. SPICE Level 2 Model8.2.3. SPICE Level 3 Model: Principal Effects8.3. Second-Order Effects8.3.1. Mobility Reduction with Gate Voltage8.3.2. Velocity Saturation (Mobility Reduction with Drain Voltage)8.3.3 Finite Output Resistance.8.3.4. Threshold-Voltage Related Short-Channel Effects8.3.5. Threshold Voltage Related Narrow-Channel Effects8.3.6. Subthreshold Current8.4. Nanoscale MOSFETs8.4.1. Down-Scaling Benefits and Rules8.4.2. Leakage Currents8.4.3. Advanced MOSFETs8.4.4 Reliability Issues.8.5. MOS-Based Memory Devices8.5.1. 1C1T DRAM Cell8.5.2 Flash-Memory Cell
.9. BJT9.1. BJT Principles9.1.1. BJT as a Voltage-Controlled Current Source9.1.2. BJT Currents and Gain Definitions9.1.3 Dependence of a and b Current Gains on Technological Parameters.9.1.4. The Four Modes of Operation: BJT as a Switch9.1.5. Complementary BJT9.1.6. BJT Versus MOSFET9.2. Principal Current-Voltage Characteristics: Ebers-Moll Model in Spice9.2.1. Injection Version9.2.2. Transport Version9.2.3. SPICE Version9.3. Second-Order Effects9.3.1. Early Effect: Finite Dynamic Output Resistance9.3.2. Parasitic Resistances9.3.3. Dependence of Common-Emitter Current Gain on Transistor Current: Low-Current Effects9.3.4. Dependence of Common-Emitter Current Gain on Transistor Current: Gummel-Poon Model for High-Current Effects9.4. Heterojunction Bipolar TransistorPART III: DEVICE TECHNOLOGY AND ELECTRONICS10. Integrated-Circuit Technologies10.1. A Diode in IC Technology10.1.1. Basic Structure10.1.2. Lithography10.1.3. Process Sequence10.1.4. Diffusion Profiles10.2. MOSFET Technologies10.2.1. Local Oxidation of Silicon (LOCOS)10.2.2. NMOS Technology10.2.3. Basic CMOS Technology10.2.4. Silicon-on-Insulator (SOI) Technology10.3. Bipolar IC Technologies10.3.1. IC Structure of NPN BJT10.3.2. Standard Bipolar Technology Process10.3.3. Implementation of PNP BJTs, Resistors, Capacitors, and Diodes10.3.4. Layer Merging10.3.5. BiCMOS Technology11. Device Electronics: Equivalent Circuits and Spice Parameters11.1. Diodes11.1.1. Static Model and Parameters in SPICE11.1.2. Large-Signal Equivalent Circuit in SPICE11.1.3. Parameter Measurement11.1.4. Small-Signal Equivalent Circuit11.2. MOSFET11.2.1. Static Model and Parameters: Level 3 in SPICE11.2.2. Parameter Measurement11.2.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE11.2.4. Simple Digital Model11.2.5. Small-Signal Equivalent Circuit11.3. BJT11.3.1. Static Model and Parameters: Ebers-Moll and Gummel-Poon Levels in SPICE11.3.2. Parameter Measurement11.3.3. Large-Signal Equivalent Circuit and Dynamic Parameters in SPICE11.3.4. Small-Signal Equivalent Circuit11.3.5. Parasitic IC Elements not Included in Device ModelsPART IV: SPECIFIC DEVICES12. Photonic Devices12.1. Light Emitting Diodes (LED)12.2. Photodetectors and Solar Cells12.2.1. Biasing for Photodetector and Solar-Cell Applications12.2.2. Carrier Generation in Photodetectors and Solar Cells12.2.3 Photocurrent Equation.12.3. Lasers12.3.1. Stimulated Emission, Inversion Population, and Other Fundamental Concepts12.3.2. A Typical Heterojunction Laser13. Microwave FETs and Diodes13.1. Gallium Arsenide versus Silicon13.1.1. Dielectric-Semiconductor Interface: Enhancement versus Depletion FETs13.1.2. Energy Gap13.1.3. Electron Mobility and Saturation Velocity13.1.4. Negative Dynamic Resistance13.2. JFET13.2.1. JFET Structure13.2.2. JFET Characteristics13.2.3. SPICE Model and Parameters13.3. MESFET13.3.1. MESFET Structure13.3.2. MESFET Characteristics13.3.3. SPICE Model and Parameters13.4. HEMT13.4.1. Two-Dimensional Electron Gas (2DEG)13.4.2. HEMT Structure and Characteristics13.5. Negative Resistance Diodes13.5.1. Amplification and Oscillation by Negative Dynamic Resistance13.5.2. Gunn Diode13.5.3. IMPATT Diode13.5.4. Tunnel Diode14. Power Devices14.1. Power Diodes14.1.1. Drift Region in Power Devices14.1.2. Switching Characteristics14.1.3. Schottky Diode14.2. Power MOSFET14.3. IGBT14.4. ThyristorBibliographyAnswers to Selected ProblemsIndex
商品描述(中文翻譯)
描述:
量子力學現象,包括能帶、能隙、空穴和有效質量,構成了半導體材料獨特的大部分特性。了解這些特性如何影響半導體的電性對於今天從事納米級設備工作的工程師至關重要。
《半導體器件原理》是為高年級本科生和研究生課程設計的,涵蓋了半導體器件理論的主要實際應用,並應用量子力學概念和方程式來發展能帶模型。本書通過與能帶模型相關的例子來呈現量子力學,使學生更深入地理解用於解釋半導體器件操作的能帶圖。半導體理論直接與集成電路的電子佈局和設計相關聯。
作者將本書分為四個部分。第一部分解釋了半導體物理,第二部分介紹了基本結構和晶體管的操作原理和建模。第三部分討論了電二極管、MOSFET和BJT等電路設計所需的主題。第四部分介紹了光子器件、微波FET、負阻抗二極管和功率器件。每章的章節都按照層次組織。首先介紹核心材料,然後是高級主題,讓教師可以根據需要選擇更嚴謹、與設計相關的主題。
目錄:
所有章節都包含摘要、問題和複習問題。第一部分:半導體簡介
1. 半導體晶體:原子鍵模型
1.1. 晶體格子
1.1.1. 單位晶胞
1.1.2. 平面和方向
1.1.3. 原子鍵結
1.2. 電流載體
1.2.1. 半導體中的兩種電流載體
1.2.2. N型和P型摻雜