Pandas for Everyone: Python Data Analysis (Paperback)
暫譯: 人人都能使用Pandas:Python數據分析(平裝本)

Chen, Daniel

  • 出版商: Addison-Wesley Professional
  • 出版日期: 2022-12-30
  • 定價: $1,850
  • 售價: 9.5$1,758
  • 語言: 英文
  • 頁數: 512
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0137891156
  • ISBN-13: 9780137891153
  • 相關分類: Python程式語言Data Science
  • 相關翻譯: 零基礎入門Pandas—Python數據分析 (簡中版)
  • 立即出貨 (庫存 < 4)

買這商品的人也買了...

商品描述

Manage and Automate Data Analysis with Pandas in Python

Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets.

Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set.

New features to the second edition include:

  • Extended coverage of plotting and the seaborn data visualization library
  • Expanded examples and resources
  • Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries
  • Online bonus material on geopandas, Dask, and creating interactive graphics with Altair


Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.

Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem.

  • Work with DataFrames and Series, and import or export data
  • Create plots with matplotlib, seaborn, and pandas
  • Combine data sets and handle missing data
  • Reshape, tidy, and clean data sets so they're easier to work with
  • Convert data types and manipulate text strings
  • Apply functions to scale data manipulations
  • Aggregate, transform, and filter large data sets with groupby
  • Leverage Pandas' advanced date and time capabilities
  • Fit linear models using statsmodels and scikit-learn libraries
  • Use generalized linear modeling to fit models with different response variables
  • Compare multiple models to select the "best" one
  • Regularize to overcome overfitting and improve performance
  • Use clustering in unsupervised machine learning

商品描述(中文翻譯)

使用 Python 中的 Pandas 管理和自動化數據分析

今天,分析師必須管理具有非凡多樣性、速度和數量的數據。使用開源的 Pandas 函式庫,您可以使用 Python 快速自動化並執行幾乎任何數據分析任務,無論其大小或複雜性。Pandas 可以幫助您確保數據的真實性,將其可視化以便有效決策,並可靠地在多個數據集之間重現分析結果。

Pandas for Everyone, 2nd Edition, 結合了實用知識和見解,以解決使用 Pandas 的實際問題,即使您是 Python 數據分析的新手。Daniel Y. Chen 通過簡單但實用的範例介紹關鍵概念,逐步構建以解決更困難的現實數據科學問題,例如使用正則化來防止數據過擬合,或何時使用無監督機器學習方法來發現數據集中的潛在結構。

第二版的新特性包括:


  • 擴展了繪圖和 seaborn 數據可視化函式庫的涵蓋範圍

  • 擴展的範例和資源

  • 更新的 Python 3.9 代碼和套件涵蓋,包括 statsmodels 和 scikit-learn 函式庫

  • 有關 geopandas、Dask 和使用 Altair 創建互動圖形的在線附加材料



Chen 為您提供了使用 Pandas 的起步,並涵蓋了數據集的合併、處理缺失數據以及結構化數據集以便於分析和可視化。他展示了強大的數據清理技術,從基本的字串操作到在數據框中同時應用函數。

一旦您的數據準備好,Chen 將指導您進行預測、聚類、推斷和探索的模型擬合。他提供有關性能和可擴展性的提示,並介紹更廣泛的 Python 數據分析生態系統。


  • 使用 DataFrames 和 Series,導入或導出數據

  • 使用 matplotlib、seaborn 和 pandas 創建圖表

  • 合併數據集並處理缺失數據

  • 重塑、整理和清理數據集,使其更易於處理

  • 轉換數據類型和操作文本字串

  • 應用函數以擴展數據操作

  • 使用 groupby 聚合、轉換和過濾大型數據集

  • 利用 Pandas 的高級日期和時間功能

  • 使用 statsmodels 和 scikit-learn 函式庫擬合線性模型

  • 使用廣義線性模型擬合具有不同響應變數的模型

  • 比較多個模型以選擇“最佳”模型

  • 進行正則化以克服過擬合並提高性能

  • 在無監督機器學習中使用聚類

作者簡介

Daniel Chen is a graduate student in the Interdisciplinary PhD program in Genetics, Bioinformatics & Computational Biology (GBCB) at Virginia Polytechnic Institute and State University (Virginia Tech). He is involved with Software Carpentry as an instructor, Mentoring Committee Member, and currently serves as the Assessment Committee Chair. He completed his Masters in Public Health at Columbia University Mailman School of Public Health in Epidemiology with a certificate in Advanced Epidemiology and currently extending his Master's thesis work in the Social and Decision Analytics Laboratory under the Virginia Bioinformatics Institute on attitude diffusion in social networks.

作者簡介(中文翻譯)

陳丹尼爾是維吉尼亞理工學院(Virginia Polytechnic Institute and State University,簡稱 Virginia Tech)跨學科博士學位課程的研究生,專攻遺傳學、生物資訊學與計算生物學(GBCB)。他擔任 Software Carpentry 的講師、指導委員會成員,並目前擔任評估委員會主席。他在哥倫比亞大學梅爾曼公共衛生學院(Columbia University Mailman School of Public Health)完成公共衛生碩士學位,主修流行病學,並獲得高級流行病學證書,目前正在維吉尼亞生物資訊研究所的社會與決策分析實驗室(Social and Decision Analytics Laboratory)延伸他的碩士論文工作,研究社交網絡中的態度擴散。