Modern Operating Systems, 3/e (Hardcover)(美國原版)
暫譯: 現代作業系統 (第三版) (精裝本)
Andrew S. Tanenbaum
- 出版商: Prentice Hall
- 出版日期: 2007-12-21
- 定價: $5,600
- 售價: 5.0 折 $2,800
- 語言: 英文
- 頁數: 1104
- 裝訂: Hardcover
- ISBN: 0136006639
- ISBN-13: 9780136006633
-
相關分類:
Operating-system
立即出貨(限量) (庫存=1)
買這商品的人也買了...
-
$520$416 -
$1,805Test-Driven Development: By Example (Paperback)
-
$520$343 -
$1,080Windows System Programming, 3/e (Hardcover)
-
$2,210$2,100 -
$880$695 -
$880$695 -
$2,831Thinking in Java, 4/e (Paperback)
-
$780$663 -
$480$379 -
$950Assembly Language for Intel-Based Computers, 5/e (IE) (美國版ISBN:0132383101)
-
$990$891 -
$1,760$1,672 -
$1,872Continuous Integration: Improving Software Quality and Reducing Risk (Paperback)
-
$1,920$1,824 -
$1,638Cross-Platform Development in C++: Building Mac OS X, Linux, and Windows Applications (Paperback)
-
$650$553 -
$750$593 -
$680$530 -
$580$458 -
$620$490 -
$520$442 -
$680$537 -
$550$468 -
$580$458
相關主題
商品描述
Description
The widely anticipated revision of this worldwide best-seller incorporates the latest developments in operating systems technologies. The Third Edition includes up-to-date materials on relevant operating systems such as Linux, Windows, and embedded real-time and multimedia systems. KEY TOPICS: Includes new and updated coverage of multimedia operating systems, multiprocessors, virtual machines, and antivirus software. Covers internal workings of Windows Vista (Ch. 11); unique even for current publications. Provides information on current research based Tanenbaum’s experiences as an operating systems researcher. MARKET: A useful reference for programmers.
Table of Contents
1 INTRODUCTION
1.1 WHAT IS AN OPERATING SYSTEM?
1.1.1 The Operating System as an Extended Machine
1.1.2 The Operating System as a Resource Manager
1.2 HISTORY OF OPERATING SYSTEMS
1.2.1 The First Generation
1.2.2 The Second Generation
1.2.3 The Third Generation
1.2.4 The Fourth Generation
1.3 COMPUTER HARDWARE REVIEW
1.3.1 Processors
1.3.2 Memory
1.3.3 Disks
1.3.4 Tapes
1.3.5 I/O Devices
1.3.6 Buses
1.3.7 Booting the Computer
1.4 THE OPERATING SYSTEM ZOO
1.4.1 Mainframe Operating Systems
1.4.2 Server Operating Systems
1.4.3 Multiprocessor Operating Systems
1.4.4 Personal Computer Operating Systems
1.4.5 Handheld Computer Operating Systems
1.4.6 Embedded Operating Systems.
1.4.7 Sensor Node Operating Systems
1.4.8 Real-Time Operating Systems
1.4.9 Smart Card Operating Systems
1.5 OPERATING SYSTEM CONCEPTS
1.5.1 Processes
1.5.2 Address Spaces
1.5.3 Files
1.5.4 Input/Output
1.5.5 Protection
1.5.6 The Shell
1.5.7 Ontogeny Recapitulates Phylogeny
1.6 SYSTEM CALLS
1.6.1 System Calls for Process Management
1.6.2 System Calls for File Management
1.6.3 System Calls for Directory Management
1.6.4 Miscellaneous System Calls
1.6.5 The Windows Win32 API
1.7 OPERATING SYSTEM STRUCTURE
1.7.1 Monolithic Systems
1.7.2 Layered Systems
1.7.3 Microkernels
1.7.4 Client-Server Model
1.7.5 Virtual Machines
1.7.6 Exokernels
1.8 THE WORLD ACCORDING TO C
1.8.1 The C Language
1.8.2 Header Files
1.8.3 Large Programming Projects
1.8.4 The Model of Run Time
1.9 RESEARCH ON OPERATING SYSTEMS
1.10 OUTLINE OF THE REST OF THIS BOOK
1.11 METRIC UNITS
1.12 SUMMARY
2 PROCESSES AND THREADS
2.1 PROCESSES
2.1.1 The Process Model
2.1.2 Process Creation
2.1.3 Process Termination
2.1.4 Process Hierarchies
2.1.5 Process States
2.1.6 Implementation of Processes
2.1.7 Modeling Multiprogramming
2.2 THREADS
2.2.1 Thread Usage
2.2.2 The Classical Thread Model
2.2.3 POSIX Threads
2.2.4 Implementing Threads in User Space
2.2.5 Implementing Threads in the Kernel
2.2.6 Hybrid Implementations
2.2.7 Scheduler Activations
2.2.8 Pop-Up Threads
2.2.9 Making Single-Threaded Code Multithreaded
2.3 INTERPROCESS COMMUNICATION
2.3.1 Race Conditions
2.3.2 Critical Regions
2.3.3 Mutual Exclusion with Busy Waiting
2.3.4 Sleep and Wakeup
2.3.5 Semaphores
2.3.6 Mutexes
2.3.7 Monitors
2.3.8 Message Passing
2.3.9 Barriers
2.4 SCHEDULING
2.4.1 Introduction to Scheduling
2.4.2 Scheduling in Batch Systems
2.4.3 Scheduling in Interactive Systems
2.4.4 Scheduling in Real-Time Systems
2.4.5 Policy versus Mechanism
2.4.6 Thread Scheduling
2.5 CLASSICAL IPC PROBLEMS
2.5.1 The Dining Philosophers Problem
2.5.2 The Readers and Writers Problem
2.6 RESEARCH ON PROCESSES AND THREADS
2.7 SUMMARY
3 MEMORY MANAGEMENT
3.1 NO MEMORY ABSTRACTION
3.2 A MEMORY ABSTRACTION: ADDRESS SPACES
3.2.1 The Notion of an Address Space
3.2.2 Swapping
3.2.3 Managing Free Memory
3.3 VIRTUAL MEMORY
3.3.1 Paging
3.3.2 Page Tables
3.3.3 Speeding Up Paging
3.3.4 Page Tables for Large Memories
3.4 PAGE LACEMENT ALGORITHMS
3.4.1 The Optimal Page Replacement Algorithm
3.4.2 The Not Recently Used Page Replacement Algorithm
3.4.3 The First-In, First-Out
3.4.4 The Second Chance Page Replacement Algorithm
3.4.5 The Clock Page Replacement Algorithm
3.4.6 The Least Recently Used
3.4.7 Simulating LRU in Software
3.4.8 The Working Set Page Replacement Algorithm
3.4.9 The WSClock Page Replacement Algorithm
3.4.10 Summary of Page Replacement Algorithms
3.5 DESIGN ISSUES FOR PAGING SYSTEMS
3.5.1 Local versus Global Allocation Policies
3.5.2 Load Control
3.5.3 Page Size
3.5.4 Separate Instruction and Data Spaces
3.5.5 Shared Pages
3.5.6 Shared Libraries
3.5.7 Mapped Files
3.5.8 Cleaning Policy
3.5.9 Virtual Memory Interface
3.6 IMPLEMENTATION ISSUES
3.6.1 Operating System Involvement with Paging
3.6.2 Page Fault Handling
3.6.3 Instruction Backup
3.6.4 Locking Pages in Memory
3.6.5 Backing Store
3.6.6 Separation of Policy and Mechanism
3.7 SEGMENTATION
3.7.1 Implementation of Pure Segmentation
3.7.2 Segmentation with Paging: MULTICS
3.7.3 Segmentation with Paging: The Intel Pentium
3.8 RESEARCH ON MEMORY MANAGEMENT
3.9 SUMMARY
4 FILE SYSTEMS
4.1 FILES
4.1.1 File Naming
4.1.2 File Structure
4.1.3 File Types
4.1.4 File Access
4.1.5 File Attributes
4.1.6 File Operations
4.1.7 An Example Program Using File System Calls
4.2 DIRECTORIES
4.2.1 Single-Level Directory Systems
4.2.2 Hierarchical Directory Systems
4.2.3 Path Names
4.2.4 Directory Operations
4.3 FILE SYSTEM IMPLEMENTATION
4.3.1 File System Layout
4.3.2 Implementing Files
4.3.3 Implementing Directories
4.3.4 Shared Files
4.3.5 Log-Structured File Systems
4.3.6 Journaling File Systems
4.3.7 Virtual File Systems
4.4 FILE SYSTEM MANAGEMENT AND OPTIMIZATION
4.4.1 Disk Space Management
4.4.2 File System Backups
4.4.3 File System Consistency
4.4.4 File System Performance
4.4.5 Defragmenting Disks
4.5 EXAMPLE FILE SYSTEMS
4.5.1 CD-ROM File Systems
4.5.2 The MS-DOS File System
4.5.3 The UNIX V7 File System
4.6 RESEARCH ON FILE SYSTEMS
4.7 SUMMARY
5 INPUT/OUTPUT
5.1 PRINCIPLES OF I/O HARDWARE
5.1.1 I/O Devices
5.1.2 Device Controllers
5.1.3 Memory-Mapped I/O
5.1.4 Direct Memory Access
5.1.5 Interrupts Revisited
5.2 PRINCIPLES OF I/O SOFTWARE
5.2.1 Goals of the I/O Software
5.2.2 Programmed I/O
5.2.3 Interrupt-Driven I/O
5.2.4 I/O Using DMA
5.3 I/O SOFTWARE LAYERS
5.3.1 Interrupt Handlers
5.3.2 Device Drivers
5.3.3 Device-Independent I/O Software
5.3.4 User-Space I/O Software
5.4 DISKS
5.4.1 Disk Hardware
5.4.2 Disk Formatting
5.4.3 Disk Arm Scheduling Algorithms
5.4.4 Error Handling
5.4.5 Stable Storage
5.5 CLOCKS
5.5.1 Clock Hardware
5.5.2 Clock Software
5.5.3 Soft Timers
5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR
5.6.1 Input Software
5.6.2 Output Software
5.7 THIN CLIENTS
5.8 POWER MANAGEMENT
5.8.1 Hardware Issues
5.8.2 Operating System Issues:
5.8.3 Application Program Issues
5.9 RESEARCH ON INPUT/OUTPUT
5.10 SUMMARY
6 DEADLOCKS
6.1 RESOURCES
6.1.1 Preemptable and Nonpreemptable Resources
6.1.2 Resource Acquisition
6.2 INTRODUCTION TO DEADLOCKS
6.2.1 Conditions for Resource Deadlocks
6.2.2 Deadlock Modeling
6.3 THE OSTRICH ALGORITHM
6.4 DEADLOCK DETECTION AND RECOVERY
6.4.1 Deadlock Detection with One Resource of Each Type
6.4.2 Deadlock Detection with Multiple Resources of Each Type
6.4.3 Recovery from Deadlock
6.5 DEADLOCK AVOIDANCE
6.5.1 Resource Trajectories
6.5.2 Safe and Unsafe States
6.5.3 The Banker’s Algorithm for a Single Resource
6.5.4 The Banker’s Algorithm for Multiple Resources
6.6 DEADLOCK PREVENTION
6.6.1 Attacking the Mutual Exclusion Condition
6.6.2 Attacking the Hold and Wait Condition
6.6.3 Attacking the No Preemption Condition
6.6.4 Attacking the Circular Wait Condition
6.7 OTHER ISSUES
6.7.1 Two-Phase Locking
6.7.2 Communication Deadlocks
6.7.3 Livelock
6.7.4 Starvation
6.8 RESEARCH ON DEADLOCKS
6.9 SUMMARY
7 MULTIMEDIA OPERATING SYSTEMS
7.1 INTRODUCTION TO MULTIMEDIA
7.2 MULTIMEDIA FILES
7.2.1 Video Encoding
7.2.2 Audio Encoding
7.3 VIDEO COMPRESSION
7.3.1 The JPEG Standard
7.3.2 The MPEG Standard
7.4 AUDIO COMPRESSION
7.5 MULTIMEDIA PROCESS SCHEDULING
7.5.1 Scheduling Homogeneous Processes
7.5.2 General Real-Time Scheduling
7.5.3 Rate Monotonic Scheduling
7.5.4 Earliest Deadline First Scheduling
7.6 MULTIMEDIA FILE SYSTEM PARADIGMS
7.6.1 VCR Control Functions
7.6.2 Near Video on Demand
7.6.3 Near Video on Demand with VCR Functions
7.7 FILE PLACEMENT
7.7.1 Placing a File on a Single Disk
7.7.2 Two Alternative File Organization Strategies
7.7.3 Placing Files for Near Video on Demand
7.7.4 Placing Multiple Files on a Single Disk
7.7.5 Placing Files on Multiple Disks
7.8 CACHING
7.8.1 Block Caching
7.8.2 File Caching
7.9 DISK SCHEDULING FOR MULTIMEDIA
7.9.1 Static Disk Scheduling
7.9.2 Dynamic Disk Scheduling
7.10 RESEARCH ON MULTIMEDIA
7.11 SUMMARY
8 MULTIPLE PROCESSOR SYSTEMS
8.1 MULTIPROCESSORS
8.1.1 Multiprocessor Hardware
8.1.2 Multiprocessor Operating System Types
8.1.3 Multiprocessor Synchronization
8.1.4 Multiprocessor Scheduling
8.2 MULTICOMPUTERS
8.2.1 Multicomputer Hardware
8.2.2 Low-Level Communication Software
8.2.3 User-Level Communication Software
8.2.4 Remote Procedure Call
8.2.5 Distributed Shared Memory
8.2.6 Multicomputer Scheduling
8.2.7 Load Balancing
8.3 VIRTUALIZATION
8.3.1 Requirements for Virtualization
8.3.2 Type 1 Hypervisors
8.3.3 Type 2 Hypervisors
8.3.4 Paravirtualization
8.3.5 Memory Virtualization
8.3.6 I/O Virtualization
8.3.7 Virtual Appliances
8.3.8 Virtual Machines on Multicore CPUs
8.3.9 Licensing Issues
8.4 DISTRIBUTED SYSTEMS
8.4.1 Network Hardware
8.4.2 Network Services and Protocols
8.4.3 Document-Based Middleware
8.4.4 File System-Based Middleware
8.4.5 Object-Based Middleware
8.4.6 Coordination-Based Middleware
8.5 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS
8.6 SUMMARY
9 SECURITY
9.1 THE SECURITY ENVIRONMENT
9.1.1 Threats
9.1.2 Intruders
9.1.3 Accidental Data Loss
9.2 BASICS OF CRYPTOGRAPHY
9.2.1 Secret-Key Cryptography
9.2.2 Public-Key Cryptography
9.2.3 One-Way Functions
9.2.4 Digital Signatures
9.2.5 Trusted Platform Module
9.3 PROTECTION MECHANISMS
9.3.1 Protection Domains
9.3.2 Access Control Lists
9.3.3 Capabilities
9.3.4 Trusted systems
9.3.5 Trusted Computing Base
9.3.6 Formal Models of Secure Systems
9.3.7 Multilevel Security
9.3.8 Covert Channels
9.4 AUTHENTICATION
9.4.1 Authentication Using Passwords
9.4.2 Authentication Using a Physical Object
9.4.3 Authentication Using Biometrics
9.5 INSIDER ATTACKS
9.5.1 Logic Bombs
9.5.2 Trap Doors
9.5.3 Login Spoofing
9.6 EXPLOITING CODE BUGS
9.6.1 Buffer Overflow Attacks
9.6.2 Format String Attacks
9.6.3 Return to libc Attacks
9.6.4 Integer Overflow Attacks
9.6.5 Code Injection Attacks
9.6.6 Privilege Escalation Attacks
9.7 MALWARE
9.7.1 Trojan Horses
9.7.2 Viruses
9.7.3 Worms
9.7.4 Spyware
9.7.5 Rootkits
9.8 DEFENSES
9.8.1 Firewalls
9.8.2 Antivirus and Anti-Antivirus Techniques
9.8.3 Code Signing
9.8.4 Jailing
9.8.5 Model-Based Intrusion Detection
9.8.6 Encapsulating Mobile Code
9.8.7 Java Security
9.9 RESEARCH ON SECURITY
9.10 SUMMARY
10 CASE STUDY 1: LINUX
10.1 HISTORY OF UNIX AND LINUX
10.1.1 UNICS
10.1.2 PDP-11 UNIX
10.1.3 Portable UNIX
10.1.4 Berkeley UNIX
10.1.5 Standard UNIX
10.1.6 MINIX
10.1.7 Linux
10.2 OVERVIEW OF LINUX
10.2.1 Linux Goals
10.2.2 Interfaces to Linux
10.2.3 The Shell
10.2.4 Linux Utility Programs
10.2.5 Kernel Structure
10.3 PROCESSES IN LINUX
10.3.1 Fundamental Concepts
10.3.2 Process Management System Calls in Linux
10.3.3 Implementation of Processes and Threads in Linux
10.3.4 Scheduling in Linux
10.3.5 Booting Linux
10.4 MEMORY MANAGEMENT IN LINUX
10.4.1 Fundamental Concepts
10.4.2 Memory Management System Calls in Linux
10.4.3 Implementation of Memory Management in Linux
10.4.4 Paging in Linux
10.5 INPUT/OUTPUT IN LINUX
10.5.1 Fundamental Concepts
10.5.2 Networking
10.5.3 Input/Output System Calls in Linux
10.5.4 Implementation of Input/Output in Linux
10.5.5 Modules in Linux
10.6 THE LINUX FILE SYSTEM
10.6.1 Fundamental Concepts
10.6.2 File System Calls in Linux
10.6.3 Implementation of the Linux File System
10.6.4 NFS: The Network File System
10.7 SECURITY IN LINUX
10.7.1 Fundamental Concepts
10.7.2 Security System Calls in Linux
10.7.3 Implementation of Security in Linux
10.8 SUMMARY
11 CASE STUDY 2: WINDOWS VISTA
11.1 HISTORY OF WINDOWS VISTA
11.1.1 1980s: MS-DOS
11.1.2 1990s: MS-DOS-based Windows
11.1.3 2000s: NT-based Windows
11.1.4 Windows Vista
11.2 PROGRAMMING WINDOWS VISTA
11.2.1 The Native NT Application Programming Interface
11.2.2 The Win32 Application Programming Interface
11.2.3 The Windows Registry
11.3 SYSTEM STRUCTURE
11.3.1 Operating System Structure
11.3.2 Booting Windows Vista
11.3.3 Implementation of the Object Manager
11.3.4 Subsystems, DLLs, and User-mode Services
11.4 PROCESSES AND THREADS IN WINDOWS VISTA
11.4.1 Fundamental Concepts
11.4.2 Job, Process, Thread and Fiber Management API Calls
11.4.3 Implementation of Processes and Threads
11.5 MEMORY MANAGEMENT
11.5.1 Fundamental Concepts
11.5.2 Memory Management System Calls
11.5.3 Implementation of Memory Management
11.6 CACHING IN WINDOWS VISTA
11.7 INPUT/OUTPUT IN WINDOWS VISTA
11.7.1 Fundamental Concepts
11.7.2 Input/Output API Calls
11.7.3 Implementation of I/O
11.8 THE WINDOWS NT FILE SYSTEM
11.8.1 Fundamental Concepts
11.8.2 Implementation of the NT File System
11.9 SECURITY IN WINDOWS VISTA
11.9.1 Fundamental Concepts
11.9.2 Security API Calls
11.9.3 Implementation of Security
11.10 SUMMARY
12 CASE STUDY 3: SYMBIAN OS
12.1 THE HISTORY OF SYMBIAN OS
12.1.1 Symbian OS Roots: Psion and EPOC
12.1.2 Symbian OS Version 6
12.1.3 Symbian OS Version 7
12.1.4 Symbian OS Today
12.2 AN OVERVIEW OF SYMBIAN OS
12.2.1 Object Orientation
12.2.2 Microkernel Design
12.2.3 The Symbian OS Nanokernel
12.2.4 Client/Server Resource Access
12.2.5 Features of a Larger Operating System
12.2.6 Communication and Multimedia
12.3 PROCESSES AND THREADS IN SYMBIAN OS
12.3.1 Threads and Nanothreads
12.3.2 Processes
12.3.3 Active Objects
12.3.4 Interprocess Communication
12.4 MEMORY MANAGEMENT
12.4.1 Systems with No Virtual Memory
12.4.2 How Symbian OS Addresses Memory
12.5 INPUT AND OUTPUT
12.5.1 Device Drivers
12.5.2 Kernel Extensions
12.5.3 Direct Memory Access
12.5.4 Special Case: Storage Media
12.5.5 Blocking I/O
12.5.6 Removable Media
12.6 STORAGE SYSTEMS
12.6.1 File systems for Mobile Devices
12.6.2 Symbian OS File systems
12.6.3 File system Security and Protection
12.7 SECURITY IN SYMBIAN OS
12.8 COMMUNICATION IN SYMBIAN OS
12.8.1 Basic Infrastructure
12.8.2 A Closer Look at the Infrastructure
12.9 SUMMARY
13 OPERATING SYSTEMS DESIGN
13.1 THE NATURE OF THE DESIGN PROBLEM
13.1.1 Goals
13.1.2 Why is it Hard to Design an Operating System?
13.2 INTERFACE DESIGN
13.2.1 Guiding Principles
13.2.2 Paradigms
13.2.3 The System Call Interface
13.3 IMPLEMENTATION
13.3.1 System Structure
13.3.2 Mechanism versus Policy
13.3.3 Orthogonality
13.3.4 Naming
13.3.5 Binding Time
13.3.6 Static versus Dynamic Structures
13.3.7 Top-Down versus Bottom-Up Implementation
13.3.8 Useful Techniques
13.4 PERFORMANCE
13.4.1 Why Are Operating Systems Slow?
13.4.2 What Should Be Optimized?
13.4.3 Space-Time Trade-offs
13.4.4 Caching
13.4.5 Hints
13.4.6 Exploiting Locality
13.4.7 Optimize the Common Case
13.5 PROJECT MANAGEMENT
13.5.1 The Mythical Man Month
13.5.2 Team Structure
13.5.3 The Role of Experience
13.5.4 No Silver Bullet
13.6 TRENDS IN OPERATING SYSTEM DESIGN
13.6.1 Virtualization
13.6.2 Multicore Chips
13.6.3 Large Address Space Operating Systems
13.6.4 Networking
13.6.5 Parallel and Distributed Systems
13.6.6 Multimedia
13.6.7 Battery-Powered Computers
13.6.8 Embedded Systems
13.6.9 Sensor Nodes
13.7 SUMMARY
14 READING LIST AND BIBLIOGRAPHY
14.1 SUGGESTIONS FOR FURTHER READING
14.1.1 Introduction and General Works
14.1.2 Processes and Threads
14.1.3 Memory Management
14.1.4 Input/Output
14.1.5 File Systems
14.1.6 eadlocks
14.1.7 Multimedia Operating Systems
14.1.8 Multiple Processor Systems
14.1.9 ecurity
14.1.10 Linux
14.1.11 Windows Vista
14.1.12 The Symbian OS
14.1.13 Design Principles
14.2 ALPHABETICAL BIBLIOGRAPHY
INDEX
商品描述(中文翻譯)
**描述**
這本全球暢銷書的廣受期待的修訂版納入了最新的作業系統技術發展。第三版包含了有關Linux、Windows以及嵌入式即時和多媒體系統等相關作業系統的最新材料。**主要主題**:包括多媒體作業系統、多處理器、虛擬機器和防毒軟體的新更新內容。涵蓋了Windows Vista的內部運作(第11章);即使對於當前的出版物來說也是獨特的。提供基於Tanenbaum作為作業系統研究者的經驗的當前研究資訊。**市場**:對程式設計師來說是一個有用的參考。
**目錄**
1 介紹
1.1 什麼是作業系統?
1.1.1 作業系統作為擴展機器
1.1.2 作業系統作為資源管理者
1.2 作業系統的歷史
1.2.1 第一代
1.2.2 第二代
1.2.3 第三代
1.2.4 第四代
1.3 電腦硬體回顧
1.3.1 處理器
1.3.2 記憶體
1.3.3 磁碟
1.3.4 磁帶
1.3.5 I/O 裝置
1.3.6 匯流排
1.3.7 開機電腦
1.4 作業系統動物園
1.4.1 大型主機作業系統
1.4.2 伺服器作業系統
1.4.3 多處理器作業系統
1.4.4 個人電腦作業系統
1.4.5 手持電腦作業系統
1.4.6 嵌入式作業系統
1.4.7 感測器節點作業系統
1.4.8 即時作業系統
1.4.9 智能卡作業系統
1.5 作業系統概念
1.5.1 程序
1.5.2 位址空間
1.5.3 檔案
1.5.4 輸入/輸出
1.5.5 保護
1.5.6 Shell
1.5.7 發生學重述系統發展
1.6 系統呼叫
1.6.1 程序管理的系統呼叫
1.6.2 檔案管理的系統呼叫
1.6.3 目錄管理的系統呼叫
1.6.4 雜項系統呼叫
1.6.5 Windows Win32 API
1.7 作業系統結構
1.7.1 單體系統
1.7.2 分層系統
1.7.3 微核心
1.7.4 客戶端-伺服器模型
1.7.5 虛擬機器
1.7.6 Exokernels
1.8 根據C的世界
1.8.1 C語言
1.8.2 標頭檔
1.8.3 大型程式專案
1.8.4 執行時間模型
1.9 作業系統研究
1.10 本書其餘部分的概要
1.11 公制單位
1.12 總結
2 程序與執行緒
2.1 程序
2.1.1 程序模型
2.1.2 程序創建
2.1.3 程序終止
2.1.4 程序層級
2.1.5 程序狀態
2.1.6 程序的實現
2.1.7 建模多程式運行
2.2 執行緒
2.2.1 執行緒使用
2.2.2 經典執行緒模型
2.2.3 POSIX執行緒
2.2.4 在用戶空間中實現執行緒
2.2.5 在核心中實現執行緒
2.2.6 混合實現
2.2.7 調度器激活
2.2.8 彈出執行緒
2.2.9 將單執行緒代碼轉換為多執行緒
2.3 進程間通信
2.3.1 競爭條件
2.3.2 臨界區域
2.3.3 使用忙等待的互斥
2.3.4 睡眠與喚醒
2.3.5 信號量
2.3.6 互斥鎖
2.3.7 監視器
2.3.8 消息傳遞
2.3.9 障礙
2.4 調度
2.4.1 調度介紹
2.4.2 批處理系統中的調度
2.4.3 互動系統中的調度
2.4.4 即時系統中的調度
2.4.5 政策與機制
2.4.6 執行緒調度
2.5 經典IPC問題
2.5.1 餐廳哲學家問題
2.5.2 讀者與寫者問題
2.6 程序與執行緒的研究
2.7 總結
3 記憶體管理
3.1 無記憶體抽象
3.2 一種記憶體抽象:位址空間
3.2.1 位址空間的概念
3.2.2 交換
3.2.3 管理空閒記憶體
3.3 虛擬記憶體
3.3.1 分頁
3.3.2 頁表
3.3.3 加速分頁
3.3.4 大記憶體的頁表
3.4 頁置換演算法
3.4.1 最佳頁置換演算法
3.4.2 最近未使用頁置換演算法
3.4.3 先進先出
3.4.4 第二次機會頁置換演算法
3.4.5 時鐘頁置換演算法
3.4.6 最少最近使用
3.4.7 在軟體中模擬LRU
3.4.8 工作集頁置換演算法
3.4.9 WSClock頁置換演算法
3.4.10 頁置換演算法總結
3.5 分頁系統的設計問題
3.5.1 本地與全局分配政策
3.5.2 負載控制
3.5.3 頁面大小
3.5.4 分開的指令和數據空間
3.5.5 共享頁面
3.5.6 共享庫
3.5.7 映射檔案
3.5.8 清理政策
3.5.9 虛擬記憶體介面
3.6 實現問題
3.6.1 作業系統在分頁中的參與
3.6.2 頁錯誤處理
3.6.3 指令備份
3.6.4 鎖定記憶體中的頁面
3.6.5 備份存儲
3.6.6 政策與機制的分離
3.7 分段
3.7.1 純分段的實現
3.7.2 帶分頁的分段:MULTICS
3.7.3 帶分頁的分段:Intel Pentium
3.8 記憶體管理的研究
3.9 總結
4 檔案系統
4.1 檔案
4.1.1 檔案命名
4.1.2 檔案結構
4.1.3 檔案類型
4.1.4 檔案存取
4.1.5 檔案屬性
4.1.6 檔案操作
4.1.7 使用檔案系統呼叫的範例程式
4.2 目錄
4.2.1 單層目錄系統
4.2.2 階層目錄系統
4.2.3 路徑名稱
4.2.4 目錄操作
4.3 檔案系統實現
4.3.1 檔案系統佈局
4.3.2 實現檔案
4.3.3 實現目錄
4.3.4 共享檔案
4.3.5 日誌結構檔案系統
4.3.6 日誌檔案系統
4.3.7 虛擬檔案系統
4.4 檔案系統管理與優化
4.4.1 磁碟空間管理
4.4.2 檔案系統備份
4.4.3 檔案系統一致性
4.4.4 檔案系統性能
4.4.5 磁碟碎片整理
4.5 範例檔案系統
4.5.1 CD-ROM檔案系統
4.5.2 MS-DOS檔案系統
4.5.3 UNIX V7檔案系統
4.6 檔案系統的研究
4.7 總結
5 輸入/輸出
5.1 I/O硬體原則
5.1.1 I/O裝置
5.1.2 裝置控制器
5.1.3 記憶體映射I/O
5.1.4 直接記憶體存取
5.1.5 中斷重訪
5.2