Programming Skills for Data Science: Start Writing Code to Wrangle, Analyze, and Visualize Data with R (Addison-Wesley Data & Analytics Series)
Michael Freeman, Joel Ross
- 出版商: Addison Wesley
- 出版日期: 2018-11-28
- 售價: $1,860
- 貴賓價: 9.5 折 $1,767
- 語言: 英文
- 頁數: 384
- 裝訂: Paperback
- ISBN: 0135133106
- ISBN-13: 9780135133101
-
相關分類:
R 語言、Data Science
-
相關翻譯:
數據科學之編程技術:使用R進行數據清理、分析與可視化 (簡中版)
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$4,200$3,990 -
$1,348Bad Data Handbook: Cleaning Up The Data So You Can Get Back To Work (Paperback)
-
$480$379 -
$3,150Applied Predictive Modeling (Hardcover)
-
$1,584Cloud Data Centers and Cost Modeling: A Complete Guide To Planning, Designing and Building a Cloud Data Center (Paperback)
-
$1,159$1,098 -
$2,680$2,546 -
$1,710$1,625 -
$4,020$3,819 -
$1,260Gray Hat Hacking The Ethical Hacker's Handbook, 5/e (Paperback)
-
$607Python 深度學習 (Deep Learning with Python)
-
$653Python 從菜鳥到高手
-
$190$181 -
$1,870$1,777
相關主題
商品描述
The Foundational Hands-On Skills You Need to Dive into Data Science
“Freeman and Ross have created the definitive resource for new and aspiring data scientists to learn foundational programming skills.”
–From the foreword by Jared Lander, series editor
Using data science techniques, you can transform raw data into actionable insights for domains ranging from urban planning to precision medicine. Programming Skills for Data Science brings together all the foundational skills you need to get started, even if you have no programming or data science experience.
Leading instructors Michael Freeman and Joel Ross guide you through installing and configuring the tools you need to solve professional-level data science problems, including the widely used R language and Git version-control system. They explain how to wrangle your data into a form where it can be easily used, analyzed, and visualized so others can see the patterns you’ve uncovered. Step by step, you’ll master powerful R programming techniques and troubleshooting skills for probing data in new ways, and at larger scales.
Freeman and Ross teach through practical examples and exercises that can be combined into complete data science projects. Everything’s focused on real-world application, so you can quickly start analyzing your own data and getting answers you can act upon. Learn to
- Install your complete data science environment, including R and RStudio
- Manage projects efficiently, from version tracking to documentation
- Host, manage, and collaborate on data science projects with GitHub
- Master R language fundamentals: syntax, programming concepts, and data structures
- Load, format, explore, and restructure data for successful analysis
- Interact with databases and web APIs
- Master key principles for visualizing data accurately and intuitively
- Produce engaging, interactive visualizations with ggplot and other R packages
- Transform analyses into sharable documents and sites with R Markdown
- Create interactive web data science applications with Shiny
- Collaborate smoothly as part of a data science team
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
商品描述(中文翻譯)
「深入資料科學所需的基礎實作技能」
「Freeman 和 Ross 創造了一本經典資源,供新手和有志於學習基礎程式技能的資料科學家使用。」- Jared Lander(系列編輯)的前言
利用資料科學技術,您可以將原始資料轉化為可行動的洞察力,適用於從城市規劃到精準醫學等各個領域。《資料科學程式技能》匯集了您入門所需的所有基礎技能,即使您沒有程式或資料科學經驗。
領先的教師 Michael Freeman 和 Joel Ross 將引導您安裝和配置解決專業級資料科學問題所需的工具,包括廣泛使用的 R 語言和 Git 版本控制系統。他們將解釋如何將您的資料整理成易於使用、分析和視覺化的形式,以便他人能夠看到您發現的模式。逐步地,您將掌握強大的 R 程式技巧和故障排除技能,以全新的方式和更大的規模探索資料。
Freeman 和 Ross 通過實際範例和練習進行教學,這些範例和練習可以結合成完整的資料科學專案。所有內容都聚焦於實際應用,因此您可以快速開始分析自己的資料並獲得可行動的答案。學習內容包括:
- 安裝完整的資料科學環境,包括 R 和 RStudio
- 高效管理專案,從版本追蹤到文件撰寫
- 使用 GitHub 托管、管理和協作資料科學專案
- 掌握 R 語言基礎:語法、程式概念和資料結構
- 載入、格式化、探索和重組資料以進行成功的分析
- 與資料庫和網路 API 互動
- 掌握準確直觀地視覺化資料的關鍵原則
- 使用 ggplot 和其他 R 套件製作引人入勝的互動式視覺化
- 將分析轉化為可共享的文件和網站,使用 R Markdown
- 使用 Shiny 創建互動式網頁資料科學應用程式
- 作為資料科學團隊的一員順利協作
「註冊您的書籍,以便方便地獲取下載、更新和/或更正。詳情請參閱書籍內頁。」