Marketing Data Science: Modeling Techniques in Predictive Analytics with R and Python (Hardcover)
暫譯: 行銷數據科學:使用 R 和 Python 的預測分析建模技術 (精裝版)

Thomas W. Miller

買這商品的人也買了...

商品描述

Now , a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications.

 

Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis.

 

Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes:

  • The role of analytics in delivering effective messages on the web
  • Understanding the web by understanding its hidden structures
  • Being recognized on the web – and watching your own competitors
  • Visualizing networks and understanding communities within them
  • Measuring sentiment and making recommendations
  • Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics

Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R.


Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

商品描述(中文翻譯)

現在,西北大學著名的分析計畫領導者提供了一個全面整合的處理,涵蓋了預測分析中行銷應用的商業和學術元素。托馬斯·W·米勒(Thomas W. Miller)為管理者和學生撰寫,解釋了在實際應用背景下的基本概念、原則和理論。

基於米勒的開創性計畫,《行銷數據科學》(Marketing Data Science)徹底探討了市場細分、目標行銷、品牌和產品定位、新產品開發、選擇模型、推薦系統、定價研究、零售地點選擇、需求估算、銷售預測、客戶保留和終身價值分析。

從米勒廣受好評的《預測分析中的建模技術》(Modeling Techniques in Predictive Analytics)接續,他整合了先前在網路分析、網路科學、資訊技術和程式設計文本中分隔的關鍵資訊和見解。內容包括:

- 分析在網路上傳遞有效訊息的角色
- 透過理解隱藏結構來理解網路
- 在網路上被認可——並觀察自己的競爭對手
- 可視化網路並理解其中的社群
- 測量情感並提出建議
- 利用關鍵數據科學方法:資料庫/數據準備、古典/貝葉斯統計、回歸/分類、機器學習和文本分析

六個完整的案例研究針對極具相關性的議題,例如:將合法電子郵件與垃圾郵件分開;識別法律相關的資訊以進行訴訟發現;從匿名的網路瀏覽數據中獲取見解等。本書廣泛的網路和網路問題集利用了豐富的公共領域數據來源;許多問題附有 Python 和/或 R 的解決方案。

《行銷數據科學》將成為所有希望利用商業分析來改善行銷表現的學生、教職員和專業行銷人員的寶貴資源。