Elementary Linear Algebra, 8/e (Hardcover)
暫譯: 初等線性代數,第8版(精裝本)

Bernard Kolman, David R. Hill

  • 出版商: Prentice Hall
  • 出版日期: 2003-06-29
  • 售價: $4,880
  • 貴賓價: 9.5$4,636
  • 語言: 英文
  • 頁數: 656
  • 裝訂: Hardcover
  • ISBN: 0130457876
  • ISBN-13: 9780130457875
  • 相關分類: 線性代數 Linear-algebra
  • 已過版

買這商品的人也買了...

相關主題

商品描述

Description   

For introductory sophomore-level courses in Linear Algebra or Matrix Theory.

This text presents the basic ideas of linear algebra in a manner that offers students a fine balance between abstraction/theory and computational skills. The emphasis is on not just teaching how to read a proof but also on how to write a proof.

 

Table of Contents

(NOTE: All relevant chapters end with Supplementary Exercises.)

1. Linear Equations and Matrices.

Systems of Linear Equations. Matrices. Matrix Multiplication. Algebraic Properties of Matrix Operations. Special Types of Matrices and Partitioned Matrices. Matrix Transformations. Computer Graphics. Correlation Coefficient (Optional).



2. Solving Linear Systems.

Echelon Form of a Matrix. Elementary Matrices: Finding A-1. Equivalent Matrices. LU-Factorization (Optional).



3. Real Vector Spaces.

Vectors in the Plane and in 3-space. Vector Spaces. Subspaces. Span and Linear Independence. Basis and Dimension. Homogeneous Systems. Coordinates and Isomorphisms. Rank of a Matrix.



4. Inner Product Spaces.

Standard Inner Product on R2 and R3. Cross Product in R3 (Optional). Inner Product Spaces. Gram-Schmidt Process. Orthogonal Complements. Least Squares (Optional).



5. Linear Transformations and Matrices.

Definition and Examples. Kernel and Range of a Linear Transformation. Matrix of a Linear Transformation. Vector Space of Matrices and Vector Space of Linear Transformations (Optional). Similarity. Inroduction to Homogeneous Coordinates (Optional).



6. Determinants.

Definition. Properties of Determinants. Cofactor Expansion. Inverse of a Matrix. Other Applications of Determinants. Determinants from a Computational Point of View.



7. Eigenvalues and Eigenvectors.

Eigenvalues and Eigenvectors. Diagonalization and Similar Matrices. Stable Age Distribution in a Population; Markov Processes (Optional). Diagonalization of Symmetric Matrices. Spectral Decomposition and Singular Value Decomposition (Optional). Real Quadratic Forms. Conic Sections. Quadric Surfaces. Dominant Eigenvalue and Principal Component Analysis (Optional).



8. Differential Equations (Optional).

Differential Equations. Dynamical Systems.



9. MATLAB for Linear Algebra.

Input and Output in MATLAB. Matrix Operations in MATLAB. Matrix Powers and Some Special Matrices. Elementary Row Operations in MATLAB. Matrix Inverses in MATLAB. Vectors in MATLAB. Applications of Linear Combinations in MATLAB. Linear Transformations in MATLAB. MATLAB Command Summary.



10. MATLAB Exercises.


Appendix A: Preliminaries.

Sets. Functions.



Appendix B: Complex Numbers.

Complex Numbers. Complex Numbers in Linear Algebra.



Appendix C: Introduction to Proofs.


Answers to Odd-Numbered Exercises.


Index.

商品描述(中文翻譯)

**描述**

適用於線性代數或矩陣理論的入門二年級課程。

本書以一種方式呈現線性代數的基本概念,為學生提供抽象/理論與計算技能之間的良好平衡。重點不僅在於教導如何閱讀證明,還在於如何撰寫證明。

**目錄**

(注意:所有相關章節均以補充練習結束。)

1. 線性方程式與矩陣。
- 線性方程組。矩陣。矩陣乘法。矩陣運算的代數性質。特殊類型的矩陣與分區矩陣。矩陣變換。計算機圖形學。相關係數(可選)。

2. 解線性系統。
- 矩陣的階梯形。基本矩陣:尋找 A⁻¹。等價矩陣。LU 分解(可選)。

3. 實向量空間。
- 平面與三維空間中的向量。向量空間。子空間。生成與線性獨立。基底與維度。齊次系統。坐標與同構。矩陣的秩。

4. 內積空間。
- R² 和 R³ 的標準內積。R³ 中的叉積(可選)。內積空間。Gram-Schmidt 過程。正交補空間。最小二乘法(可選)。

5. 線性變換與矩陣。
- 定義與範例。線性變換的核與範圍。線性變換的矩陣。矩陣的向量空間與線性變換的向量空間(可選)。相似性。齊次坐標簡介(可選)。

6. 行列式。
- 定義。行列式的性質。余子式展開。矩陣的逆。行列式的其他應用。從計算的角度看行列式。

7. 特徵值與特徵向量。
- 特徵值與特徵向量。對角化與相似矩陣。人口中的穩定年齡分佈;馬可夫過程(可選)。對稱矩陣的對角化。譜分解與奇異值分解(可選)。實二次型。圓錐曲線。二次曲面。主特徵值與主成分分析(可選)。

8. 微分方程(可選)。
- 微分方程。動態系統。

9. MATLAB 用於線性代數。
- MATLAB 中的輸入與輸出。MATLAB 中的矩陣運算。矩陣的冪與一些特殊矩陣。MATLAB 中的基本行運算。MATLAB 中的矩陣逆。MATLAB 中的向量。MATLAB 中線性組合的應用。MATLAB 中的線性變換。MATLAB 命令摘要。

10. MATLAB 練習。

附錄 A:基礎知識。
- 集合。函數。

附錄 B:複數。
- 複數。線性代數中的複數。

附錄 C:證明的介紹。

奇數練習的答案。

索引。