Introduction to Robust Estimation and Hypothesis Testing, 4/e (Hardcover)
暫譯: 穩健估計與假設檢定導論(第4版,精裝本)

Rand R. Wilcox

買這商品的人也買了...

相關主題

商品描述

 

<內容簡介>

 

Introduction to Robust Estimating and Hypothesis Testing, 4th Editon, is a ‘how-to’ on the application of robust methods using available software. Modern robust methods provide improved techniques for dealing with outliers, skewed distribution curvature and heteroscedasticity that can provide substantial gains in power as well as a deeper, more accurate and more nuanced understanding of data. Since the last edition, there have been numerous advances and improvements. They include new techniques for comparing groups and measuring effect size as well as new methods for comparing quantiles. Many new regression methods have been added that include both parametric and nonparametric techniques. The methods related to ANCOVA have been expanded considerably. New perspectives related to discrete distributions with a relatively small sample space are described as well as new results relevant to the shift function. The practical importance of these methods is illustrated using data from real world studies. The R package written for this book now contains over 1200 functions.

New to this edition

*35% revised content
*Covers many new and improved R functions
*New techniques that deal with a wide range of situations

<章節目錄>

 

Preface
Chapter 1: Introduction
Abstract
1.1. Problems with Assuming Normality
1.2. Transformations
1.3. The Influence Curve
1.4. The Central Limit Theorem
1.5. Is the ANOVA F Robust?
1.6. Regression
1.7. More Remarks
1.8. R Software
1.9. Some Data Management Issues
1.10. Data Sets
References
Chapter 2: A Foundation for Robust Methods
Abstract
2.1. Basic Tools for Judging Robustness
2.2. Some Measures of Location and Their Influence Function
2.3. Measures of Scale
2.4. Scale Equivariant M-Measures of Location
2.5. Winsorized Expected Values
References
Chapter 3: Estimating Measures of Location and Scale
Abstract
3.1. A Bootstrap Estimate of a Standard Error
3.2. Density Estimators
3.3. The Sample Trimmed Mean
3.4. The Finite Sample Breakdown Point
3.5. Estimating Quantiles
3.6. An M-Estimator of Location
3.7. One-Step M-Estimator
3.8. W-Estimators
3.9. The Hodges-Lehmann Estimator
3.10. Skipped Estimators
3.11. Some Comparisons of the Location Estimators
3.12. More Measures of Scale
3.13. Some Outlier Detection Methods
3.14. Exercises
References
Chapter 4: Confidence Intervals in the One-Sample Case
Abstract
4.1. Problems when Working with Means
4.2. The g-and-h Distribution
4.3. Inferences About the Trimmed and Winsorized Means
4.4. Basic Bootstrap Methods
4.5. Inferences About M-Estimators
4.6. Confidence Intervals for Quantiles
4.7. Empirical Likelihood
4.8. Concluding Remarks
4.9. Exercises
References
Chapter 5: Comparing Two Groups
Abstract
5.1. The Shift Function
5.2. Student's t Test
5.3. Comparing Medians and Other Trimmed Means
5.4. Inferences Based on a Percentile Bootstrap Method
5.5. Comparing Measures of Scale
5.6. Permutation Tests
5.7. Rank-Based Methods and a Probabilistic Measure of Effect Size
5.8. Comparing Two Independent Binomial and Multinomial Distributions
5.9. Comparing Dependent Groups
5.10. Exercises
References
Chapter 6: Some Multivariate Methods
Abstract
6.1. Generalized Variance
6.2. Depth
6.3. Some Affine Equivariant Estimators
6.4. Multivariate Outlier Detection Methods
6.5. A Skipped Estimator of Location and Scatter
6.6. Robust Generalized Variance
6.7. Multivariate Location: Inference in the One-Sample Case
6.8. Comparing OP Measures of Location
6.9. Multivariate Density Estimators
6.10. A Two-Sample, Projection-Type Extension of the Wilcoxon-Mann-Whitney Test
6.11. A Relative Depth Analog of the Wilcoxon-Mann-Whitney Test
6.12. Comparisons Based on Depth
6.13. Comparing Dependent Groups Based on All Pairwise Differences
6.14. Robust Principal Components Analysis
6.15. Cluster Analysis
6.16. Multivariate Discriminate Analysis
6.17. Exercises
References
Chapter 7: One-Way and Higher Designs for Independent Groups
Abstract
7.1. Trimmed Means and a One-Way Design
7.2. Two-Way Designs and Trimmed Means
7.3. Three-Way Designs and Trimmed Means Including Medians
7.4. Multiple Comparisons Based on Medians and Other Trimmed Means
7.5. A Random Effects Model for Trimmed Means
7.6. Global Tests Based on M-Measures of Location
7.7. M-Measures of Location and a Two-Way Design
7.8. Ranked-Based Methods for a One-Way Design
7.9. A Rank-Based Method for a Two-Way Design
7.10. MANOVA Based on Trimmed Means
7.11. Nested Designs
7.12. Exercises
References
Chapter 8: Comparing Multiple Dependent Groups
Abstract
8.1. Comparing Trimmed Means
8.2. Bootstrap Methods Based on Marginal Distributions
8.3. Bootstrap Methods Based on Difference Scores
8.4. Comments on Which Method to Use
8.5. Some Rank-Based Methods
8.6. Between-by-Within and Within-by-Within Designs
8.7. Some Rank-Based Multivariate Methods
8.8. Three-Way Designs
8.9. Exercises
References
Chapter 9: Correlation and Tests of Independence
Abstract
9.1. Problems with Pearson's Correlation
9.2. Two Types of Robust Correlations
9.3. Some Type M Measures of Correlation
9.4. Some Type O Correlations
9.5. A Test of Independence Sensitive to Curvature
9.6. Comparing Correlations: Independent Case
9.7. Exercises
References
Chapter 10: Robust Regression
Abstract
10.1. Problems with Ordinary Least Squares
10.2. Theil-Sen Estimator
10.3. Least Median of Squares
10.4. Least Trimmed Squares Estimator
10.5. Least Trimmed Absolute Value Estimator
10.6. M-Estimators
10.7. The Hat Matrix
10.8. Generalized M-Estimators
10.9. The Coakley-Hettmansperger and Yohai Estimators
10.10. Skipped Estimators
10.11. Deepest Regression Line
10.12. A Criticism of Methods with a High Breakdown Point
10.13. Some Additional Estimators
10.14. Comments About Various Estimators
10.15. Outlier Detection Based on a Robust Fit
10.16. Logistic Regression and the General Linear Model
10.17. Multivariate Regression
10.18. Exercises
References
Chapter 11: More Regression Methods
Abstract
11.1. Inferences About Robust Regression Parameters
11.2. Comparing the Regression Parameters of J=2 Groups
11.3. Detecting Heteroscedasticity
11.4. Curvature and Half-Slope Ratios
11.5. Curvature and Nonparametric Regression
11.6. Checking the Specification of a Regression Model
11.7. Regression Interactions and Moderator Analysis
11.8. Comparing Parametric, Additive and Nonparametric Fits
11.9. Measuring the Strength of an Association Given a Fit to the Data
11.10. Comparing Predictors
11.11. Marginal Longitudinal Data Analysis: Comments on Comparing Groups
11.12. Exercises
References
Chapter 12: ANCOVA
Abstract
12.1. Methods Based on Specific Design Points and a Linear Model
12.2. Methods when There Is Curvature and a Single Covariate
12.3. Dealing with Two Covariates when There Is Curvature
12.4. Some Global Tests
12.5. Methods for Dependent Groups
12.6. Exercises
References
References
Index

 

商品描述(中文翻譯)

內容簡介

《穩健估計與假設檢定導論(第四版)》是一本關於如何使用可用軟體應用穩健方法的指南。現代穩健方法提供了改進的技術來處理異常值、偏斜分佈曲率和異方差性,這些方法能顯著提高檢定的效能,並對數據提供更深入、更準確和更細緻的理解。自上版以來,已有許多進展和改進,包括比較群組和測量效應大小的新技術,以及比較分位數的新方法。新增了許多回歸方法,包括參數和非參數技術。與 ANCOVA 相關的方法也有了顯著擴展。描述了與相對較小樣本空間的離散分佈相關的新觀點,以及與移動函數相關的新結果。這些方法的實際重要性通過真實世界研究中的數據進行說明。本書所編寫的 R 套件現在包含超過 1200 個函數。

本版新內容

* 35% 的修訂內容
* 涵蓋許多新和改進的 R 函數
* 處理各種情況的新技術

章節目錄

前言
第一章:導論
摘要
1.1. 假設常態性問題
1.2. 轉換
1.3. 影響曲線
1.4. 中心極限定理
1.5. ANOVA F 是否穩健?
1.6. 回歸
1.7. 更多說明
1.8. R 軟體
1.9. 一些數據管理問題
1.10. 數據集
參考文獻
第二章:穩健方法的基礎
摘要
2.1. 判斷穩健性的基本工具
2.2. 一些位置測量及其影響函數
2.3. 規模測量
2.4. 規模等變的 M 測量
2.5. Winsorized 預期值
參考文獻
第三章:估計位置和規模的測量
摘要
3.1. 標準誤的自助法估計
3.2. 密度估計器
3.3. 樣本修剪均值
3.4. 有限樣本崩潰點
3.5. 估計分位數
3.6. 位置的 M 估計器
3.7. 一步 M 估計器
3.8. W 估計器
3.9. Hodges-Lehmann 估計器
3.10. 跳過的估計器
3.11. 位置估計器的比較
3.12. 更多的規模測量
3.13. 一些異常值檢測方法
3.14. 練習
參考文獻
第四章:單樣本情況下的信賴區間
摘要
4.1. 使用均值時的問題
4.2. g-and-h 分佈
4.3. 關於修剪和 Winsorized 均值的推論
4.4. 基本自助法
4.5. 關於 M 估計器的推論
4.6. 分位數的信賴區間
4.7. 實證似然
4.8. 總結說明
4.9. 練習
參考文獻
第五章:比較兩個群組
摘要
5.1. 移動函數
5.2. Student's t 檢定
5.3. 比較中位數和其他修剪均值
5.4. 基於百分位數自助法的推論
5.5. 比較規模測量
5.6. 排列檢定
5.7. 基於排名的方法和效應大小的概率測量
5.8. 比較兩個獨立的二項和多項分佈
5.9. 比較依賴群組
5.10. 練習
參考文獻
第六章:一些多變量方法
摘要
6.1. 廣義變異數
6.2. 深度
6.3. 一些仿射等變估計器
6.4. 多變量異常值檢測方法
6.5. 位置和散佈的跳過估計器
6.6. 穩健的廣義變異數
6.7. 多變量位置:單樣本情況下的推論
6.8. 比較 OP 位置測量
6.9. 多變量密度估計器
6.10. Wilcoxon-Mann-Whitney 檢定的兩樣本投影型擴展
6.11. Wilcoxon-Mann-Whitney 檢定的相對深度類比
6.12. 基於深度的比較
6.13. 基於所有成對差異的依賴群組比較
6.14. 穩健主成分分析
6.15. 聚類分析
6.16. 多變量判別分析
6.17. 練習
參考文獻
第七章:獨立群組的一元及更高設計
摘要
7.1. 修剪均值和一元設計
7.2. 二元設計和修剪均值
7.3. 三元設計和包括中位數的修剪均值
7.4. 基於中位數和其他修剪均值的多重比較
7.5. 修剪均值的隨機效應模型
7.6. 基於 M 測量的全局檢定
7.7. M 測量和二元設計
7.8. 一元設計的排名基礎方法
7.9. 二元設計的排名基礎方法
7.10. 基於修剪均值的 MANOVA
7.11. 嵌套設計
7.12. 練習
參考文獻
第八章:比較多個依賴群組
摘要
8.1. 比較修剪均值
8.2. 基於邊際分佈的自助法
8.3. 基於差異分數的自助法
8.4. 關於使用哪種方法的評論
8.5. 一些基於排名的方法
8.6. 之間-內部和內部-內部設計
8.7. 一些基於排名的多變量方法
8.8. 三元設計
8.9. 練習
參考文獻
第九章:相關性和獨立性檢定
摘要
9.1. Pearson 相關的問題
9.2. 兩種穩健相關性
9.3. 一些 M 類型的相關測量
9.4. 一些 O 類型的相關性
9.5. 對曲率敏感的獨立性檢定
9.6. 比較相關性:獨立情況
9.7. 練習
參考文獻
第十章:穩健回歸
摘要
10.1. 普通最小二乘法的問題
10.2. Theil-Sen 估計器
10.3. 最小中位數平方
10.4. 最小修剪平方估計器
10.5. 最小修剪絕對值估計器
10.6. M 估計器
10.7. Hat 矩陣
10.8. 廣義 M 估計器
10.9. Coakley-Hettmansperger 和 Yohai 估計器
10.10. 跳過的估計器
10.11. 最深回歸線
10.12. 對高崩潰點方法的批評
10.13. 一些額外的估計器
10.14. 關於各種估計器的評論
10.15. 基於穩健擬合的異常值檢測
10.16. 邏輯回歸和一般線性模型
10.17. 多變量回歸
10.18. 練習
參考文獻
第十一章:更多回歸方法
摘要
11.1. 關於穩健回歸參數的推論
11.2. 比較 J=2 群組的回歸參數
11.3. 檢測異方差性
11.4. 曲率和半斜率比
11.5. 曲率和非參數回歸
11.6. 檢查回歸模型的規範
11.7. 回歸交互作用和調節分析
11.8. 比較參數、加法和非參數擬合
11.9. 在擬合數據的情況下測量關聯的強度
11.10. 比較預測變數
11.11. 邊際縱向數據分析:關於比較群組的評論
11.12. 練習
參考文獻
第十二章:ANCOVA
摘要
12.1. 基於特定設計點和線性模型的方法
12.2. 當存在曲率和單一協變數時的方法
12.3. 當存在曲率時處理兩個協變數
12.4. 一些全局檢定
12.5. 依賴群組的方法
12.6. 練習
參考文獻
參考文獻
索引