Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems (Intelligent Data-Centric Systems: Sensor Collected Intelligence)
暫譯: 電子學習的智能數據分析:增強在線學習系統的安全性和可信度(智能數據中心系統:傳感器收集的智能)

Jorge Miguel, Santi Caballé, Fatos Xhafa

  • 出版商: Academic Press
  • 出版日期: 2016-08-09
  • 售價: $4,740
  • 貴賓價: 9.5$4,503
  • 語言: 英文
  • 頁數: 192
  • 裝訂: Paperback
  • ISBN: 0128045353
  • ISBN-13: 9780128045350
  • 相關分類: 感測器 SensorData Science資訊安全
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct―most notably cheating―however, e-Learning services are often designed and implemented without considering security requirements.

This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time.

The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems.

  • Provides guidelines for anomaly detection, security analysis, and trustworthiness of data processing
  • Incorporates state-of-the-art, multidisciplinary research on online collaborative learning, social networks, information security, learning management systems, and trustworthiness prediction
  • Proposes a parallel processing approach that decreases the cost of expensive data processing
  • Offers strategies for ensuring against unfair and dishonest assessments
  • Demonstrates solutions using a real-life e-Learning context

商品描述(中文翻譯)

《智慧數據分析於電子學習:增強線上學習系統的安全性與可信度》探討了基於可信度評估與預測的電子學習資訊安全。在過去十年中,許多學習管理系統出現在教育市場中。這些系統的安全性對於防止不公平和不誠實的行為(尤其是作弊)至關重要,然而,電子學習服務往往在設計和實施時未考慮安全需求。

本書提供了針對線上學習的可信度分析、建模、評估和預測的功能性方法,以增強安全性和支持,並突顯出大多數線上協作學習系統中的安全缺陷。本書探討了基於集體智慧的可信度方法論,旨在克服這些缺陷。它檢視了利用大量數據(學習活動所產生的數據)進行的可信度分析。此外,由於處理這些數據的成本高昂,本書提供了一種平行處理範式,以支持即時的學習活動。

本書討論了管理電子學習的數據可視化方法,提供分析所收集數據所需的工具。採用案例導向的方法,本書以評估和驗證電子學習系統安全性的模型和方法論作結。

- 提供異常檢測、安全分析和數據處理可信度的指導方針
- 融合了在線協作學習、社交網絡、資訊安全、學習管理系統和可信度預測的尖端跨學科研究
- 提出了一種平行處理方法,以降低昂貴數據處理的成本
- 提供確保防止不公平和不誠實評估的策略
- 在真實的電子學習情境中展示解決方案