Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems (Intelligent Data-Centric Systems: Sensor Collected Intelligence)

Jorge Miguel, Santi Caballé, Fatos Xhafa

  • 出版商: Academic Press
  • 出版日期: 2016-08-09
  • 售價: $4,690
  • 貴賓價: 9.5$4,456
  • 語言: 英文
  • 頁數: 192
  • 裝訂: Paperback
  • ISBN: 0128045353
  • ISBN-13: 9780128045350
  • 相關分類: 感測器 SensorData Science資訊安全
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct―most notably cheating―however, e-Learning services are often designed and implemented without considering security requirements.

This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as processing this data is costly, the book offers a parallel processing paradigm that can support learning activities in real-time.

The book discusses data visualization methods for managing e-Learning, providing the tools needed to analyze the data collected. Using a case-based approach, the book concludes with models and methodologies for evaluating and validating security in e-Learning systems.

  • Provides guidelines for anomaly detection, security analysis, and trustworthiness of data processing
  • Incorporates state-of-the-art, multidisciplinary research on online collaborative learning, social networks, information security, learning management systems, and trustworthiness prediction
  • Proposes a parallel processing approach that decreases the cost of expensive data processing
  • Offers strategies for ensuring against unfair and dishonest assessments
  • Demonstrates solutions using a real-life e-Learning context

商品描述(中文翻譯)

《智能數據分析在電子學習中的應用:增強線上學習系統的安全性和可信度》探討了基於可信度評估和預測的電子學習中的信息安全問題。在過去的十年中,教育市場上出現了許多學習管理系統。這些系統的安全性對於防止不公平和不誠實的行為,尤其是作弊行為,至關重要。然而,設計和實施電子學習服務時往往沒有考慮到安全需求。

本書提供了強化線上學習的安全性和支持的可信度分析、建模、評估和預測的功能方法,並突出了大多數線上協作學習系統中存在的安全缺陷。本書探討了基於集體智慧的可信度方法,以克服這些缺陷。它還研究了利用大量數據學習活動生成的可信度分析。此外,由於處理這些數據成本高昂,本書提供了一種可以實時支持學習活動的並行處理範式。

本書討論了管理電子學習的數據可視化方法,提供了分析收集到的數據所需的工具。通過基於案例的方法,本書最終提出了評估和驗證電子學習系統安全性的模型和方法。

本書的特點包括:
- 提供異常檢測、安全分析和數據處理可信度的指南
- 結合了關於線上協作學習、社交網絡、信息安全、學習管理系統和可信度預測的最新跨學科研究
- 提出了一種降低昂貴數據處理成本的並行處理方法
- 提供了防止不公平和不誠實評估的策略
- 通過真實的電子學習情境演示了解決方案。