Sharing Data and Models in Software Engineering (Paperback)
暫譯: 軟體工程中的數據與模型共享 (平裝本)
Tim Menzies, Ekrem Kocaguneli, Burak Turhan, Leandro Minku, Fayola Peters
- 出版商: Morgan Kaufmann
- 出版日期: 2014-12-15
- 定價: $3,100
- 售價: 8.0 折 $2,480
- 語言: 英文
- 頁數: 406
- 裝訂: Paperback
- ISBN: 0124172954
- ISBN-13: 9780124172951
-
相關分類:
軟體工程
立即出貨 (庫存=1)
買這商品的人也買了...
-
$480$379 -
$980$980 -
$880$695 -
$860$731 -
$280$238 -
$400$380 -
$520$442 -
$680$578 -
$360$306 -
$360$324 -
$550$550 -
$350$277 -
$520$442 -
$450$356 -
$550$468 -
$650$553 -
$99$89 -
$780$616 -
$360$284 -
$480$408 -
$520$442 -
$380$300 -
$800$720 -
$2,450$2,450 -
$420$357
相關主題
商品描述
Data Science for Software Engineering: Sharing Data and Models presents guidance and procedures for reusing data and models between projects to produce results that are useful and relevant. Starting with a background section of practical lessons and warnings for beginner data scientists for software engineering, this edited volume proceeds to identify critical questions of contemporary software engineering related to data and models. Learn how to adapt data from other organizations to local problems, mine privatized data, prune spurious information, simplify complex results, how to update models for new platforms, and more. Chapters share largely applicable experimental results discussed with the blend of practitioner focused domain expertise, with commentary that highlights the methods that are most useful, and applicable to the widest range of projects. Each chapter is written by a prominent expert and offers a state-of-the-art solution to an identified problem facing data scientists in software engineering. Throughout, the editors share best practices collected from their experience training software engineering students and practitioners to master data science, and highlight the methods that are most useful, and applicable to the widest range of projects.
- Shares the specific experience of leading researchers and techniques developed to handle data problems in the realm of software engineering
- Explains how to start a project of data science for software engineering as well as how to identify and avoid likely pitfalls
- Provides a wide range of useful qualitative and quantitative principles ranging from very simple to cutting edge research
- Addresses current challenges with software engineering data such as lack of local data, access issues due to data privacy, increasing data quality via cleaning of spurious chunks in data
商品描述(中文翻譯)
《軟體工程的資料科學:共享資料與模型》提供了在專案之間重用資料和模型的指導和程序,以產生有用且相關的結果。本書首先介紹了針對初學者資料科學家的實用課程和警示,接著識別當代軟體工程中與資料和模型相關的關鍵問題。學習如何將其他組織的資料調整為本地問題,挖掘私有化資料,修剪虛假資訊,簡化複雜結果,如何為新平台更新模型等。各章節分享了廣泛適用的實驗結果,並結合了以實務為導向的領域專業知識,評論中突顯了最有用且適用於最廣泛專案的方法。每一章均由知名專家撰寫,提供針對資料科學家在軟體工程中面臨的問題的最先進解決方案。在整個過程中,編輯們分享了他們在培訓軟體工程學生和從業人員掌握資料科學方面的最佳實踐,並強調了最有用且適用於最廣泛專案的方法。
- 分享領先研究者的具體經驗及為解決軟體工程領域資料問題而開發的技術
- 解釋如何啟動一個針對軟體工程的資料科學專案,以及如何識別和避免可能的陷阱
- 提供從非常簡單到尖端研究的廣泛有用的定性和定量原則
- 解決當前軟體工程資料的挑戰,例如缺乏本地資料、因資料隱私而產生的存取問題、透過清理虛假資料來提高資料質量等