High Performance Deformable Image Registration Algorithms for Manycore Processors (Paperback)
暫譯: 高效能可變形影像配準演算法於多核心處理器上

James Shackleford, Nagarajan Kandasamy, Gregory Sharp

買這商品的人也買了...

相關主題

商品描述

High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. Extracting useful information from 2D/3D data is essential to realizing key technologies underlying our daily lives. Examples include autonomous vehicles and humanoid robots that can recognize and manipulate objects in cluttered environments using stereo vision and laser sensing and medical imaging to localize and diagnose tumors in internal organs using data captured by CT/MRI scans.

  • Demonstrates how to redesign widely used image registration algorithms so as to best expose the underlying parallelism available in these algorithms
  • Shows how to pose and implement the parallel versions of the algorithms within the single instruction, multiple data (SIMD) model supported by GPUs
  • Provides Programming "tricks" that can help readers develop other image processing algorithms, including registration algorithms for the GPU

商品描述(中文翻譯)

《高效能可變形影像配準演算法針對多核心處理器的應用》開發了適合現代多核心架構(包括圖形處理單元 GPU)的高度資料平行影像配準演算法。專注於可變形配準,我們展示了如何開發適合在 GPU 上執行的資料平行版本的配準演算法。影像配準是將兩個或多個影像對齊到共同坐標系的過程,這是比較或融合來自不同感測器測量數據的基本步驟。從 2D/3D 數據中提取有用信息對於實現我們日常生活中關鍵技術至關重要。例子包括自動駕駛車輛和人形機器人,這些設備能夠使用立體視覺和激光感測在雜亂環境中識別和操作物體,以及使用 CT/MRI 掃描捕獲的數據來定位和診斷內部器官中的腫瘤的醫學影像技術。

- 演示如何重新設計廣泛使用的影像配準演算法,以最佳化這些演算法中可用的底層平行性
- 展示如何在 GPU 支援的單指令多資料(SIMD)模型中提出和實現演算法的平行版本
- 提供編程「技巧」,幫助讀者開發其他影像處理演算法,包括針對 GPU 的配準演算法