Programming Massively Parallel Processors: A Hands-on Approach (Paperback)
暫譯: 大規模平行處理器程式設計:實作導向方法 (平裝本)
David B. Kirk, Wen-mei W. Hwu
- 出版商: Morgan Kaufmann
- 出版日期: 2010-02-05
- 定價: $1,600
- 售價: 5.0 折 $800
- 語言: 英文
- 頁數: 280
- 裝訂: Paperback
- ISBN: 0123814723
- ISBN-13: 9780123814722
-
相關分類:
CUDA、GPU
立即出貨(限量)
買這商品的人也買了...
-
$880$695 -
$880$695 -
$980$774 -
$990$891 -
$980$774 -
$590$466 -
$720$569 -
$2,030$1,929 -
$450$356 -
$780$616 -
$780$616 -
$860$731 -
$650$514 -
$680$537 -
$820$648 -
$580$458 -
$480$374 -
$530$419 -
$890$703 -
$490$323 -
$750$495 -
$480$379 -
$490$387 -
$450$351 -
$2,160$2,052
相關主題
商品描述
Multi-core processors are no longer the future of computing-they are the present day reality. A typical mass-produced CPU features multiple processor cores, while a GPU (Graphics Processing Unit) may have hundreds or even thousands of cores. With the rise of multi-core architectures has come the need to teach advanced programmers a new and essential skill: how to program massively parallel processors.
Programming Massively Parallel Processors: A Hands-on Approach shows both student and professional alike the basic concepts of parallel programming and GPU architecture. Various techniques for constructing parallel programs are explored in detail. Case studies demonstrate the development process, which begins with computational thinking and ends with effective and efficient parallel programs.
- Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing.
- Utilizes CUDA (Compute Unified Device Architecture), NVIDIA's software development tool created specifically for massively parallel environments.
- Shows you how to achieve both high-performance and high-reliability using the CUDA programming model as well as OpenCL.
商品描述(中文翻譯)
多核心處理器不再是計算的未來——它們是當今的現實。典型的大量生產的中央處理器(CPU)具有多個處理器核心,而圖形處理單元(GPU)可能擁有數百甚至數千個核心。隨著多核心架構的興起,對於進階程式設計師來說,學習一項新的基本技能變得至關重要:如何編寫大規模並行處理器的程式。
《編程大規模並行處理器:實作方法》向學生和專業人士展示了並行程式設計和GPU架構的基本概念。書中詳細探討了構建並行程式的各種技術。案例研究展示了開發過程,該過程始於計算思維,並以有效且高效的並行程式結束。
- 教授計算思維和問題解決技術,以促進高效能的並行計算。
- 利用CUDA(計算統一設備架構),這是NVIDIA專為大規模並行環境創建的軟體開發工具。
- 向您展示如何使用CUDA程式設計模型以及OpenCL來實現高效能和高可靠性。