CPU-based Application Transformation to CUDA: Transformation of CPU-based Applications To Leverage on Graphics Processors using CUDA (Paperback)
Anas Mohd Nazlee, Fawnizu Azmadi Hussin
- 出版商: LAP LAMBERT
- 出版日期: 2012-07-11
- 售價: $2,110
- 貴賓價: 9.5 折 $2,005
- 語言: 英文
- 頁數: 88
- 裝訂: Paperback
- ISBN: 3659171212
- ISBN-13: 9783659171215
-
相關分類:
CUDA
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$660$627 -
$2,210$2,100 -
$1,225Operating System Concepts with Java, 8/e (IE-Paperback)
-
$590$466 -
$490$387 -
$1,323Thomas' Calculus Early Transcendentals, 12/e (IE-Paperback)
-
$380$372 -
$480$379 -
$2,600$2,470 -
$2,165$2,057 -
$450$356 -
$950$751 -
$299$254 -
$680$537 -
$880$695 -
$480$408 -
$780$616 -
$490$417 -
$540$459 -
$349$297 -
$500$395 -
$320$250 -
$380$342 -
$680$537 -
$320$320
相關主題
商品描述
Scientific computation requires a great amount of computing power especially in floating-point operation but a high-end multi-cores processor is currently limited in terms of floating point operation performance and parallelization. Recent technological advancement has made parallel computing technically and financially feasible using Compute Unified Device Architecture (CUDA) developed by NVIDIA. This research focuses on measuring the performance of CUDA and implementing CUDA for a scientific computation involving the process of porting the source code from CPU to GPU using direct integration technique. The ported source code is then optimized by managing the resources to achieve performance gain over CPU. It is found that CUDA is able to boost the performance of the system up to 69 times in Parboil Benchmark Suite. Successful attempt at porting Serpent encryption algorithm and Lattice Boltzmann Method provided up to 7 times throughput performance gain and up to 10 times execution time performance gain respectively over the CPU. Direct integration guideline for porting the source code is then produced based on the two implementations.
商品描述(中文翻譯)
科學計算需要大量的計算能力,尤其是在浮點運算方面,但高端多核處理器在浮點運算性能和並行化方面目前存在限制。最近的技術進步使得使用由NVIDIA開發的統一計算設備架構(CUDA)進行並行計算在技術和財務上都成為可能。本研究的重點是測量CUDA的性能,並使用直接整合技術將源代碼從CPU移植到GPU進行科學計算。移植的源代碼通過管理資源進行優化,以實現比CPU更好的性能。研究發現,在Parboil Benchmark Suite中,CUDA能夠將系統性能提升多達69倍。成功移植Serpent加密算法和Lattice Boltzmann方法分別使吞吐量性能提升多達7倍和執行時間性能提升多達10倍。根據這兩種實現,我們提供了直接整合源代碼的指南。