Foundations of Genetic Algorithms 2003 (FOGA 7) (Hardcover)
暫譯: 遺傳演算法基礎 2003 (FOGA 7) (精裝本)
Kenneth A. Dejong, Ricardo Poli, Jonathan E. Rowe, Ke
- 出版商: Morgan Kaufmann
- 出版日期: 2003-06-03
- 定價: $2,800
- 售價: 8.0 折 $2,240
- 語言: 英文
- 頁數: 416
- 裝訂: Hardcover
- ISBN: 0122081552
- ISBN-13: 9780122081552
-
相關分類:
Algorithms-data-structures
立即出貨(限量) (庫存=5)
買這商品的人也買了...
-
$680$578 -
$490$382 -
$980$833 -
$450$351 -
$1,890$1,796 -
$690$587 -
$450$356 -
$750$638 -
$650$553 -
$580$493 -
$760$600 -
$580$458 -
$590$466 -
$280$238 -
$620$527 -
$480$374 -
$680$578 -
$620$527 -
$690$538 -
$420$357 -
$720$562 -
$390$304 -
$1,045$990 -
$880$695 -
$480$336
相關主題
商品描述
Foundations of Genetic Algorithms, Volume 7 (FOGA-7) is a collection of 22 papers written by the field's leading researchers, representing the most current, state-of-the-art research both in GAs and in evolutionary computation theory in general. Much more than proceedings, this clothbound book and its companion six volumes document the bi-annual FOGA workshops since their inception in 1990. Before publication, each paper is peer reviewed, revised, and edited. Covering the variety of analysis tools and techniques that characterize the behavior of evolutionary algorithms, the FOGA series, with its brand-new volume 7, provides the single best source of reference for the theoretical work in this field.
Editorial Introduction; Schema Analysis of OneMax Problem: Evolution Equation for First Order Schemata; Partitioning, Epistasis, and Uncertainty; A Schema-theory-based Extension of Geiringer's Theorem for Linear GP and Variable-length GAs under Homologous Crossover; Bistability in a Gene Pool GA with Mutation; The 'Crossover Landscape' and the [exclamdown][yen]Hamming Landscape[exclamdown][[brvbar]] for Binary Search Spaces; Modelling Finite Populations; The Sensitivity of PBIL to Its Learning Rate, and How Detailed Balance Can Remove It; Evolutionary Algorithms and the Boltzmann Distribution; Modeling and Simulating Diploid Simple Genetic Algorithms; On the Evolution of Phenotypic Exploration Distributions; How many Good Programs are there? How Long are they?; Modeling Variation in Cooperative Coevolution Using Evolutionary Game Theory; A Mathematical Framework for the Study of Coevolution; Guaranteeing Coevolutionary Objective Measures; A New Framework for the Valuation of Algorithms for Black-Box Optimization; A Study on the Performance of the (1+1)-Evolutionary Algorithm; The Long Term Behavior of Genetic Algorithms with Stochastic Evaluation; On the Behavior of [florin]v[florin][Yacute][florin]1[florin]z[florin]n[florin]Ü[florin]w[florin]ES Optimizing Functions Disturbed by Generalized Noise; Parameter Perturbation Mechanisms in Binary Coded GAs with Self-Adaptive Mutation; Fitness Gains and Mutation Patterns: Deriving Mutation Rates by Exploiting Landscape Data; Towards Qualitative Models of Interactions in Evolutionary Algorithms; Genetic Search Reinforced by the Population Hierarchy
商品描述(中文翻譯)
《遺傳演算法基礎,第七卷(FOGA-7)》是由該領域領先研究者撰寫的22篇論文的合集,代表了遺傳演算法(GAs)及進化計算理論的最新前沿研究。這本精裝書及其六本伴隨卷冊不僅僅是會議論文集,還記錄了自1990年以來每兩年舉辦的FOGA研討會。在出版之前,每篇論文都經過同行評審、修訂和編輯。FOGA系列的第七卷涵蓋了特徵化進化演算法行為的各種分析工具和技術,提供了該領域理論工作的最佳參考來源。
目錄
編輯介紹;OneMax問題的模式分析:一階模式的進化方程;分區、表現型互作與不確定性;基於模式理論的Geiringer定理擴展,適用於線性遺傳編程和同源交叉下的可變長度遺傳演算法;具有突變的基因庫遺傳演算法中的雙穩態;二元搜尋空間中的「交叉景觀」和Hamming景觀;建模有限族群;PBIL對其學習率的敏感性,以及如何通過詳細平衡來消除它;進化演算法與玻爾茲曼分佈;建模和模擬二倍體簡單遺傳演算法;表型探索分佈的演化;有多少個優良程式?它們有多長?;使用進化博弈理論建模合作共同演化中的變異;共同演化研究的數學框架;保證共同演化目標度量;黑箱優化算法評價的新框架;(1+1)-進化演算法性能的研究;具有隨機評估的遺傳演算法的長期行為;關於優化函數的行為v^1z^nÜwES受到廣義噪聲的影響;具有自適應突變的二進制編碼遺傳演算法中的參數擾動機制;適應度增益與突變模式:通過利用景觀數據推導突變率;朝向進化演算法中互動的定性模型;由族群層級強化的遺傳搜索。