Working Analysis (Hardcover)
暫譯: 工作分析 (精裝版)

Jeffery Cooper

買這商品的人也買了...

相關主題

商品描述

Description:

The text is for a two semester course in advanced calculus. It develops the basic ideas of calculus rigorously but with an eye to showing how mathematics connects with other areas of science and engineering. In particular, effective numerical computation is developed as an important aspect of mathematical analysis.

 

 

Table of Contents:

Preface

1. Foundations
1.1 Ordered Fields
1.2 Completeness
1.3 Using Inequalities
1.4 Induction
1.5 Sets and Functions

2. Sequences of Real Numbers
2.1 Limits of Sequences
2.2 Criteria for Convergence
2.3 Cauchy Sequences

3. Continuity
3.1 Limits of Functions
3.2 Continuous Functions
3.3 Further Properties of Continuous Functions
3.4 Golden-Section Search
3.5 The Intermediate Value Theorem

4. The Derivative
4.1 The Derivative and Approximation
4.2 The Mean Value Theorem
4.3 The Cauchy Mean Value Theorem and l’Hopital’s Rule
4.4 The Second Derivative Test

5. Higher Derivatives and Polynomial Approximation
5.1 Taylor Polynomials
5.2 Numerical Differentiation
5.3 Polynomial Inerpolation
5.4 Convex Funtions

6. Solving Equations in One Dimension
6.1 Fixed Point Problems
6.2 Computation with Functional Iteration
6.3 Newton’s Method

7. Integration
7.1 The Definition of the Integral
7.2 Properties of the Integral
7.3 The Fundamental Theorem of Calculus and Further Properties of the Integral
7.4 Numerical Methods of Integration
7.5 Improper Integrals

8. Series
8.1 Infinite Series
8.2 Sequences and Series of Functions
8.3 Power Series and Analytic Functions

Appendix I
I.1 The Logarithm Functions and Exponential Functions
I.2 The Trigonometric Funtions

Part II
9. Convergence and Continuity in Rn
9.1 Norms
9.2 A Little Topology
9.3 Continuous Functions of Several Variables

10. The Derivative in Rn
10.1 The Derivative and Approximation in Rn
10.2 Linear Transformations and Matrix Norms
10.3 Vector-Values Mappings

11. Solving Systems of Equations
11.1 Linear Systems
11.2 The Contraction Mapping Theorem
11.3 Newton’s Method
11.4 The Inverse Function Theorem
11.5 The Implicit Function Theorem
11.6 An Application in Mechanics

12. Quadratic Approximation and Optimization
12.1 Higher Derivatives and Quadratic Approximation
12.2 Convex Functions
12.3 Potentials and Dynamical Systems
12.4 The Method of Steepest Descent
12.5 Conjugate Gradient Methods
12.6 Some Optimization Problems

13. Constrained Optimization
13.1 Lagrange Multipliers
13.2 Dependence on Parameters and Second-order Conditions
13.3 Constrained Optimization with Inequalities
13.4 Applications in Economics

14. Integration in Rn
14.1 Integration Over Generalized Rectangles
14.2 Integration Over Jordan Domains
14.3 Numerical Methods
14.4 Change of Variable in Multiple Integrals
14.5 Applications of the Change of Variable Theorem
14.6 Improper Integrals in Several Variables
14.7 Applications in Probability

15. Applications of Integration to Differential Equations
15.1 Interchanging Limits and Integrals
15.2 Approximation by Smooth Functions
15.3 Diffusion
15.4 Fluid Flow

Appendix II
A Matrix Factorization

Solutions to Selected Exercises

References

Index

商品描述(中文翻譯)

**描述:**
這本書是針對高級微積分的兩學期課程。它嚴謹地發展微積分的基本概念,同時展示數學如何與其他科學和工程領域相連接。特別是,有效的數值計算被發展為數學分析的一個重要方面。

**目錄:**
前言

1. 基礎
1.1 有序域
1.2 完備性
1.3 使用不等式
1.4 數學歸納法
1.5 集合與函數

2. 實數序列
2.1 序列的極限
2.2 收斂的標準
2.3 柯西序列

3. 連續性
3.1 函數的極限
3.2 連續函數
3.3 連續函數的進一步性質
3.4 黃金分割搜尋
3.5 中間值定理

4. 導數
4.1 導數與近似
4.2 平均值定理
4.3 柯西平均值定理與l'Hôpital法則
4.4 第二導數測試

5. 高階導數與多項式近似
5.1 泰勒多項式
5.2 數值微分
5.3 多項式插值
5.4 凸函數

6. 一維方程的解
6.1 固定點問題
6.2 使用函數迭代的計算
6.3 牛頓法

7. 積分
7.1 積分的定義
7.2 積分的性質
7.3 微積分基本定理及積分的進一步性質
7.4 數值積分方法
7.5 不當積分

8. 級數
8.1 無窮級數
8.2 函數的序列與級數
8.3 幂級數與解析函數

附錄 I
I.1 對數函數與指數函數
I.2 三角函數

第二部分
9. Rn中的收斂與連續性
9.1 範數
9.2 一點拓撲
9.3 多變數的連續函數

10. Rn中的導數
10.1 Rn中的導數與近似
10.2 線性變換與矩陣範數
10.3 向量值映射

11. 解方程組
11.1 線性系統
11.2 收縮映射定理
11.3 牛頓法
11.4 反函數定理
11.5 隱函數定理
11.6 機械應用

12. 二次近似與優化
12.1 高階導數與二次近似
12.2 凸函數
12.3 潛能與動態系統
12.4 最速下降法
12.5 共軛梯度法
12.6 一些優化問題

13. 約束優化
13.1 拉格朗日乘數
13.2 參數依賴與二階條件
13.3 帶不等式的約束優化
13.4 經濟學中的應用

14. Rn中的積分
14.1 在廣義矩形上的積分
14.2 在喬丹域上的積分
14.3 數值方法
14.4 多重積分中的變數變換
14.5 變數變換定理的應用
14.6 多變數的不當積分
14.7 機率中的應用

15. 積分在微分方程中的應用
15.1 極限與積分的互換
15.2 平滑函數的近似
15.3 擴散
15.4 流體流動

附錄 II
A 矩陣分解

選定練習的解答

參考文獻

索引