Human Recognition in Unconstrained Environments: Using Computer Vision, Pattern Recognition and Machine Learning Methods for Biometrics
暫譯: 不受限制環境中的人類識別:使用計算機視覺、模式識別和機器學習方法進行生物識別
- 出版商: Academic Press
- 出版日期: 2017-01-13
- 售價: $5,570
- 貴賓價: 9.5 折 $5,292
- 語言: 英文
- 頁數: 248
- 裝訂: Hardcover
- ISBN: 0081007051
- ISBN-13: 9780081007051
-
相關分類:
Machine Learning、Computer Vision
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides a unique picture of the complete ‘in-the-wild’ biometric recognition processing chain; from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents.
Coverage includes:
- Data hardware architecture fundamentals
- Background subtraction of humans in outdoor scenes
- Camera synchronization
- Biometric traits: Real-time detection and data segmentation
- Biometric traits: Feature encoding / matching
- Fusion at different levels
- Reaction against security incidents
- Ethical issues in non-cooperative biometric recognition in public spaces
- Use computer vision, pattern recognition and machine learning methods for biometric recognition in real-world, real-time settings, especially those related to forensics and security
- Choose the most suited biometric traits and recognition methods for uncontrolled settings
- Evaluate the performance of a biometric system on real world data
With this book readers will learn how to:
- Presents a complete picture of the biometric recognition processing chain, ranging from data acquisition to the reaction procedures against security incidents
- Provides specific requirements and issues behind each typical phase of the development of a robust biometric recognition system
- Includes a contextualization of the ethical/privacy issues behind the development of a covert recognition system which can be used for forensics and security activities
商品描述(中文翻譯)
這本書提供了一個完整的「實際環境」生物識別處理鏈的獨特視角;從數據獲取到檢測、分割、編碼,以及對安全事件的匹配反應。
涵蓋內容包括:
- 數據硬體架構基礎
- 戶外場景中人類的背景減除
- 相機同步
- 生物特徵:實時檢測和數據分割
- 生物特徵:特徵編碼/匹配
- 不同層級的融合
- 對安全事件的反應
- 公共空間中非合作生物識別的倫理問題
透過這本書,讀者將學會如何:
- 在現實世界的實時環境中,特別是與法醫和安全相關的情境中,使用計算機視覺、模式識別和機器學習方法進行生物識別
- 為不受控的環境選擇最合適的生物特徵和識別方法
- 評估生物識別系統在現實世界數據上的性能
- 提供生物識別處理鏈的完整圖景,涵蓋從數據獲取到對安全事件的反應程序
- 提供每個典型階段開發穩健生物識別系統背後的具體要求和問題
- 包含對於開發可用於法醫和安全活動的隱蔽識別系統的倫理/隱私問題的背景說明