Big Data Beyond the Hype: A Guide to Conversations for Today's Data Center
暫譯: 超越炒作的大數據:當今數據中心對話指南
Zikopoulos, Paul, deRoos, Dirk, Bienko, Christopher
- 出版商: McGraw-Hill Education
- 出版日期: 2014-11-16
- 售價: $1,040
- 貴賓價: 9.5 折 $988
- 語言: 英文
- 頁數: 394
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0071844651
- ISBN-13: 9780071844659
-
相關分類:
大數據 Big-data
海外代購書籍(需單獨結帳)
相關主題
商品描述
A. R. Ammons once said, "A word too much repeated falls out of being," and although the term Big Data sometimes seems to be "too much repeated," it's not about to fall "out of being." That said, it is subject to a lot of hype. The term Big Data is a bit of a misnomer. Truth be told, we're not even big fans of the term--despite the fact that it is so prominently displayed on the cover of this book--because it implies that other data is somehow small (it might be) or that this particular type of data is large in size (it can be, but doesn't have to be).
This is Big Data in a nutshell: It is the ability to retain, process, and understand data like never before. It can mean more data than what you are using today; but it can also mean different kinds of data, a venture into the unstructured world where most of today's data resides. The Big Data opportunity. It's a shift, rift, lift, or cliff for your business--this book is going to help you experience the shift and lift, while those that don't work to get beyond the hype end up in a rift or cliff.
In this book you will learn how cognitive computing systems, like IBM Watson, fit into the Big Data world. You'll learn how Big Data needs a "ground-to-cloud" architecture, what a Data Refinery looks like, and the importance of a next generation data platform. Gain an understanding of the concepts of data-in-motion, data-at-rest (technologies like Hadoop play here, as well as others), the role that NoSQL and polyglot play in a leading edge analytics architecture, and more. Get details about the Big Data platform manifesto and why it is a must for any Big Data project. Capturing, storing, refining, transforming, governing, securing, and analyzing data, traditionally or as a service, are important topics also covered in this book.
商品描述(中文翻譯)
深入了解如何管理和使用 IBM 獨特的即時和靜態大數據分析能力
A. R. Ammons 曾說過:「一個詞重複得太多會失去其意義」,儘管「大數據」這個術語有時似乎被「過度重複」,但它並不會「消失」。話雖如此,它確實受到很多炒作。大數據這個術語有點不恰當。說實話,我們甚至不太喜歡這個術語——儘管它在本書封面上顯示得如此顯眼——因為它暗示其他數據在某種程度上是小的(可能是)或這種特定類型的數據在大小上是大的(可以是,但不一定)。
這就是大數據的精髓:它是前所未有地保留、處理和理解數據的能力。它可以意味著比你今天使用的數據更多;但它也可以意味著不同類型的數據,進入大多數當今數據所處的非結構化世界。大數據的機會。這對你的業務來說是一個轉變、裂縫、提升或懸崖——這本書將幫助你體驗轉變和提升,而那些不努力超越炒作的人最終會陷入裂縫或懸崖。
在這本書中,你將學習到像 IBM Watson 這樣的認知計算系統如何融入大數據世界。你將了解大數據需要什麼樣的「地面到雲端」架構,數據精煉廠的樣子,以及下一代數據平台的重要性。理解數據在運行中(data-in-motion)、靜態數據(data-at-rest)的概念(像 Hadoop 這樣的技術在這裡發揮作用,還有其他技術),NoSQL 和多語言在前沿分析架構中的角色,以及更多內容。獲取有關大數據平台宣言的詳細信息,以及為什麼它對任何大數據項目都是必須的。捕獲、存儲、精煉、轉換、管理、保護和分析數據,無論是傳統方式還是作為服務,這些都是本書中涵蓋的重要主題。