Big Data for Big Decisions: Building a Data-Driven Organization
暫譯: 大數據與重大決策:建立數據驅動的組織
Pera, Krishna
- 出版商: Auerbach Publication
- 出版日期: 2022-12-30
- 售價: $4,790
- 貴賓價: 9.5 折 $4,551
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1032342811
- ISBN-13: 9781032342818
-
相關分類:
GAN 生成對抗網絡、大數據 Big-data
海外代購書籍(需單獨結帳)
商品描述
Building a data-driven organization (DDO) is an enterprise-wide initiative that may consume and lock up resources for the long term. Understandably, any organization considering such an initiative would insist on a roadmap and business case to be prepared and evaluated prior to approval. This book presents a step-by-step methodology in order to create a roadmap and business case, and provides a narration of the constraints and experiences of managers who have attempted the setting up of DDOs. The emphasis is on the big decisions - the key decisions that influence 90% of business outcomes - starting from decision first and reengineering the data to the decisions process-chain and data governance, so as to ensure the right data are available at the right time, every time.
Investing in artificial intelligence and data-driven decision making are now being considered a survival necessity for organizations to stay competitive. While every enterprise aspires to become 100% data-driven and every Chief Information Officer (CIO) has a budget, Gartner estimates over 80% of all analytics projects fail to deliver intended value.
Most CIOs think a data-driven organization is a distant dream, especially while they are still struggling to explain the value from analytics. They know a few isolated successes, or a one-time leveraging of big data for decision making does not make an organization data-driven. As of now, there is no precise definition for data-driven organization or what qualifies an organization to call itself data-driven. Given the hype in the market for big data, analytics and AI, every CIO has a budget for analytics, but very little clarity on where to begin or how to choose and prioritize the analytics projects. Most end up investing in a visualization platform like Tableau or QlikView, which in essence is an improved version of their BI dashboard that the organization had invested into not too long ago. The most important stakeholders, the decision-makers, are rarely kept in the loop while choosing analytics projects.
This book provides a fail-safe methodology for assured success in deriving intended value from investments into analytics. It is a practitioners' handbook for creating a step-by-step transformational roadmap prioritizing the big data for the big decisions, the 10% of decisions that influence 90% of business outcomes, and delivering material improvements in the quality of decisions, as well as measurable value from analytics investments.
The acid test for a data-driven organization is when all the big decisions, especially top-level strategic decisions, are taken based on data and not on the collective gut feeling of the decision makers in the organization.
商品描述(中文翻譯)
建立數據驅動組織(DDO)是一項全企業範圍的倡議,可能會長期消耗和鎖定資源。可以理解的是,任何考慮這樣倡議的組織都會堅持在批准之前準備和評估路線圖和商業案例。本書提供了一個逐步的方法論,以創建路線圖和商業案例,並敘述了嘗試建立DDO的管理者所面臨的限制和經驗。重點在於重大決策——影響90%商業結果的關鍵決策——從決策開始,重新設計數據到決策過程鏈和數據治理,以確保每次都能在正確的時間獲得正確的數據。
投資於人工智慧和數據驅動的決策制定現在被視為組織保持競爭力的生存必要條件。雖然每個企業都渴望成為100%數據驅動,且每位首席資訊官(CIO)都有預算,但Gartner估計超過80%的分析項目未能提供預期的價值。
大多數CIO認為數據驅動組織是一個遙不可及的夢想,特別是在他們仍在努力解釋分析的價值時。他們知道幾個孤立的成功案例,或一次性利用大數據進行決策並不能使組織成為數據驅動的。目前,對於數據驅動組織或什麼使組織有資格稱為數據驅動,並沒有精確的定義。考慮到市場上對大數據、分析和人工智慧的炒作,每位CIO都有分析預算,但對於從何開始或如何選擇和優先考慮分析項目卻幾乎沒有清晰的指引。大多數最終投資於像Tableau或QlikView這樣的可視化平台,這本質上是他們不久前投資的商業智慧(BI)儀表板的改進版本。在選擇分析項目時,最重要的利益相關者,即決策者,往往不會被納入考量。
本書提供了一種保證成功的無失敗方法論,以確保從分析投資中獲得預期的價值。這是一本實務手冊,旨在創建一個逐步的轉型路線圖,優先考慮影響90%商業結果的重大決策的10%決策,並在決策質量上實現實質性改善,以及從分析投資中獲得可衡量的價值。
數據驅動組織的試金石在於,所有重大決策,特別是高層戰略決策,都是基於數據而非組織內決策者的集體直覺。
作者簡介
Introduction
Part I Foundation
Chapter 01 Quo Vadis: Before The Transformational Journey
Chapter 02 Decision-Driven Before Data-Driven
Chapter 03 Known's, Unknowns And The Elusive Value From Analytics.
Chapter 04 Towards A Data-Driven Organization: A Roadmap For Analytics
Chapter 05 Identifying The 'Big' Decisions...
Chapter 06 Decisions To Data: Building A 'Big' Decision Roadmap & Business Case
Part II Data Strategy & Governance
Chapter 07 Unchartered: A Brief History Of Data
Chapter 08 Building A Data-Driven 'It' Strategy
Chapter 09 Building A Data Strategy
Part III Data-Driven Marketing Function
Chapter 10 Building A Data-Driven Marketing Strategy
Chapter 11 Integrated Data Governance
作者簡介(中文翻譯)
引言
第一部分 基礎
第01章 何去何從:轉型之旅之前
第02章 以決策為驅動,而非以數據為驅動
第03章 已知、未知與分析中的難以捉摸的價值
第04章 朝向數據驅動的組織:分析的路線圖
第05章 確定「重大」決策...
第06章 決策到數據:建立「重大」決策路線圖與商業案例
第二部分 數據策略與治理
第07章 未知領域:數據的簡史
第08章 建立數據驅動的IT策略
第09章 建立數據策略
第三部分 數據驅動的行銷功能
第10章 建立數據驅動的行銷策略
第11章 整合數據治理