Essential Data Analytics, Data Science, and AI: A Practical Guide for a Data-Driven World
Attobrah, Maxine
- 出版商: Apress
- 出版日期: 2024-12-30
- 售價: $2,050
- 貴賓價: 9.5 折 $1,948
- 語言: 英文
- 頁數: 200
- 裝訂: Quality Paper - also called trade paper
- ISBN: 9798868810695
- ISBN-13: 9798868810695
-
相關分類:
Data Science
尚未上市,無法訂購
相關主題
商品描述
In today's world, understanding data analytics, data science, and artificial intelligence is not just an advantage but a necessity. This book is your thorough guide to learning these innovative fields, designed to make the learning practical and engaging.
The book starts by introducing data analytics, data science, and artificial intelligence. It illustrates real-world applications, and, it addresses the ethical considerations tied to AI. It also explores ways to gain data for practice and real-world scenarios, including the concept of synthetic data. Next, it uncovers Extract, Transform, Load (ETL) processes and explains how to implement them using Python. Further, it covers artificial intelligence and the pivotal role played by machine learning models. It explains feature engineering, the distinction between algorithms and models, and how to harness their power to make predictions. Moving forward, it discusses how to assess machine learning models after their creation, with insights into various evaluation techniques. It emphasizes the crucial aspects of model deployment, including the pros and cons of on-device versus cloud-based solutions. It concludes with real-world examples and encourages embracing AI while dispelling fears, and fostering an appreciation for the transformative potential of these technologies.
Whether you're a beginner or an experienced professional, this book offers valuable insights that will expand your horizons in the world of data and AI.
What you will learn:
- What are Synthetic data and Telemetry data
- How to analyze data using programming languages like Python and Tableau.
- What is feature engineering
- What are the practical Implications of Artificial Intelligence
Who this book is for:
Data analysts, scientists, and engineers seeking to enhance their skills, explore advanced concepts, and stay up-to-date with ethics. Business leaders and decision-makers across industries are interested in understanding the transformative potential and ethical implications of data analytics and AI in their organizations.
商品描述(中文翻譯)
在當今世界,理解數據分析、數據科學和人工智慧不僅是一種優勢,而是一種必要性。本書是您學習這些創新領域的全面指南,旨在使學習變得實用且引人入勝。
本書首先介紹數據分析、數據科學和人工智慧。它闡述了現實世界中的應用,並探討了與人工智慧相關的倫理考量。它還探索了獲取數據以進行實踐和現實場景的方法,包括合成數據的概念。接下來,它揭示了提取、轉換和加載(ETL)過程,並解釋如何使用Python實現這些過程。此外,它涵蓋了人工智慧及機器學習模型所扮演的關鍵角色。它解釋了特徵工程、算法與模型之間的區別,以及如何利用它們的力量進行預測。接著,它討論了如何在創建機器學習模型後進行評估,並提供了各種評估技術的見解。它強調了模型部署的關鍵方面,包括設備端解決方案與雲端解決方案的優缺點。最後,它以現實世界的例子作結,鼓勵人們擁抱人工智慧,同時消除恐懼,並培養對這些技術變革潛力的欣賞。
無論您是初學者還是經驗豐富的專業人士,本書都提供了寶貴的見解,將擴展您在數據和人工智慧領域的視野。
您將學到的內容:
- 什麼是合成數據和遙測數據
- 如何使用Python和Tableau等程式語言分析數據
- 什麼是特徵工程
- 人工智慧的實際影響
本書適合對象:
數據分析師、科學家和工程師,尋求提升技能、探索進階概念並保持對倫理的關注。各行各業的商業領導者和決策者也對理解數據分析和人工智慧在其組織中的變革潛力及倫理影響感興趣。
作者簡介
Maxine Attobrah holds a bachelor's degree in Electrical Engineering from the University of Massachusetts - Amherst. Maxine's career began as an Electronic Flight Controls Engineer at Lockheed Martin, where he was responsible for developing and testing control system software to enhance helicopter piloting. Subsequently, Maxine pursued further education, earning master's degrees in Electrical & Computer Engineering and Engineering & Technology Innovation Management from Carnegie Mellon University. Currently, Maxine serves as a Data Scientist consultant at Booz Allen Hamilton.
作者簡介(中文翻譯)
Maxine Attobrah 擁有麻省大學阿默斯特分校的電機工程學士學位。Maxine 的職業生涯始於洛克希德·馬丁公司擔任電子飛行控制工程師,負責開發和測試控制系統軟體,以提升直升機的駕駛性能。隨後,Maxine 繼續深造,獲得卡內基梅隆大學的電機與計算機工程及工程與技術創新管理碩士學位。目前,Maxine 擔任 Booz Allen Hamilton 的數據科學顧問。