Generative AI Evaluation: Metrics, Methods, and Best Practices

Vemula, Anand

  • 出版商: Independently Published
  • 出版日期: 2024-07-18
  • 售價: $1,100
  • 貴賓價: 9.5$1,045
  • 語言: 英文
  • 頁數: 66
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 9798333475862
  • ISBN-13: 9798333475862
  • 相關分類: 人工智慧
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Generative AI Evaluation: Metrics, Methods, and Best Practices" delves into the intricate world of assessing generative AI models. As generative AI continues to revolutionize various industries with its capabilities in creating text, images, and audio, evaluating its performance becomes crucial to ensure reliability, quality, and ethical standards. This book offers a comprehensive guide to understanding and implementing effective evaluation techniques for generative AI.

The book is divided into five parts, each addressing different aspects of generative AI evaluation. Part I provides an introduction to generative AI, outlining its historical development, key technologies, and various applications across industries. This section sets the stage by highlighting the importance and potential of generative AI.

Part II focuses on the fundamentals of AI evaluation, discussing the importance of evaluation, various types of evaluation metrics, and methods. It covers perceptual metrics like Inception Score and FID for image models, and BLEU, ROUGE, and METEOR for text models, along with task-specific and qualitative evaluation techniques.

In Part III, practical approaches to evaluating generative AI are explored. This section guides readers through designing evaluation experiments, selecting appropriate metrics, and analyzing data. Specific chapters are dedicated to evaluating text generation, image generation, and speech/audio generation models, covering relevant metrics and addressing challenges like bias and fairness.

Part IV dives into advanced topics, including adversarial evaluation techniques, ethical and societal implications, and future directions in generative AI evaluation. It discusses adversarial testing, red teaming, improving model robustness, and evaluating ethical impacts, along with regulatory and policy considerations.

Finally, Part V presents case studies and practical implementations. Detailed case studies illustrate the evaluation process for text and image generation models, providing insights and best practices. The book also reviews available tools and frameworks for generative AI evaluation and offers a practical guide to using and customizing evaluation pipelines.

"Generative AI Evaluation: Metrics, Methods, and Best Practices" is an essential resource for AI practitioners, researchers, and anyone interested in ensuring the reliability and ethical integrity of generative AI models. It combines theoretical insights with practical advice, making it a comprehensive guide in the field.

商品描述(中文翻譯)

《生成式 AI 評估:指標、方法與最佳實踐》深入探討評估生成式 AI 模型的複雜世界。隨著生成式 AI 在創造文本、圖像和音頻方面的能力持續革新各行各業,評估其性能變得至關重要,以確保可靠性、質量和倫理標準。本書提供了一個全面的指南,幫助讀者理解和實施有效的生成式 AI 評估技術。

本書分為五個部分,每個部分針對生成式 AI 評估的不同方面。第一部分介紹生成式 AI,概述其歷史發展、關鍵技術及在各行各業的各種應用。這一部分強調了生成式 AI 的重要性和潛力,為後續內容奠定基礎。

第二部分專注於 AI 評估的基本原則,討論評估的重要性、各種評估指標和方法。它涵蓋了圖像模型的感知指標,如 Inception Score 和 FID,以及文本模型的 BLEU、ROUGE 和 METEOR,並介紹了任務特定和定性評估技術。

在第三部分,探討了評估生成式 AI 的實用方法。本部分指導讀者設計評估實驗、選擇合適的指標和分析數據。特定章節專門針對文本生成、圖像生成和語音/音頻生成模型的評估,涵蓋相關指標並解決偏見和公平性等挑戰。

第四部分深入探討高級主題,包括對抗性評估技術、倫理和社會影響,以及生成式 AI 評估的未來方向。它討論了對抗性測試、紅隊測試、提高模型穩健性和評估倫理影響,以及監管和政策考量。

最後,第五部分呈現案例研究和實踐實施。詳細的案例研究說明了文本和圖像生成模型的評估過程,提供了見解和最佳實踐。本書還回顧了可用的生成式 AI 評估工具和框架,並提供了使用和自定義評估流程的實用指南。

《生成式 AI 評估:指標、方法與最佳實踐》是 AI 從業者、研究人員以及任何希望確保生成式 AI 模型的可靠性和倫理完整性的人士的重要資源。它結合了理論見解和實用建議,使其成為該領域的全面指南。